Definition. Let F F F be a field. A linear algebra over the field F is a vector space a \Large{\frak a} a over F F F with an additional operation called multiplication of vectors which associates with each pair of vectors α , β \alpha, \beta α,β in a \Large{\frak a} a a vector α β \alpha\beta αβ in a \Large{\frak a} a called the product of α \alpha α and β \beta β in such a way that
( a ) multiplication is associative,
α ( β γ ) = ( α β ) γ \alpha(\beta\gamma)=(\alpha\beta)\gamma α(βγ)=(αβ)γ
( b ) multiplication is distributive with respect to addition,
α ( β + γ ) = α β + α γ and ( α + β ) γ = α γ + β γ \alpha(\beta+\gamma)=\alpha\beta+\alpha\gamma\quad\text{and}\quad(\alpha+\beta)\gamma=\alpha\gamma+\beta\gamma α(β+γ)=αβ+αγand(α+β)γ=αγ+βγ
( c ) for each scalar c c c in F F F,
c ( α β ) = ( c α ) β = α ( c β ) . c(\alpha\beta)=(c\alpha)\beta=\alpha(c\beta). c(αβ)=(cα)β=α(cβ).
If there is an element 1 1 1 in a \Large{\frak a} a such that 1 α = α 1 = α 1\alpha=\alpha1=\alpha 1α=α1=α for each α \alpha α in a \Large{\frak a} a, we call a \Large{\frak a} a a linear algebra with identity over F, and call 1 1 1 the identity of a \Large{\frak a} a. The algebra a \Large{\frak a} a is called commutative if α β = β α \alpha\beta=\beta\alpha αβ=βα for all α \alpha α and β \beta β in a \Large{\frak a} a.
Definition. Let F [ x ] F[x] F[x] be the subspace of F ∞ F^{\infty} F∞ spanned by the vectors 1 , x , x 2 , … 1,x,x^2,\dots 1,x,x2,…. An element of F [ x ] F[x] F[x] is called a polynomial over F.
Theorem 1. Let f f f and g g g be non-zero polynomials over F F F. Then
( i ) f g fg fg is a non-zero polynomial;
( ii ) deg ( f g ) = deg f + deg g \deg (fg)=\deg f+\deg g deg(fg)=degf+degg;
( iii ) f g fg fg is a monic polynomial if both f f f and g g g are monic polynomials;
( iv ) f g fg fg is a scalar polynomial if both f f f and g g g are scalar polynomials;
( v ) if f + g ≠ 0 , deg ( f + g ) ≤ max ( deg f , deg g ) f+g\neq 0, \deg (f+g) \leq \max(\deg f,\deg g) f+g=0,deg(f+g)≤max(degf,degg).
Corollary 1. The set of all polynomials over a given field F F F equipped with the opertations
a f + b g = ( a f 0 + b g 0 , a f 1 + b g 1 , a f 2 + b g 2 , … ) af+bg=(af_0+bg_0,af_1+bg_1,af_2+bg_2,\dots) af+bg=(af0+bg0,af1+bg1,af2+bg2,…)
and
( f g ) n = ∑ i = 0 n f j g n − i , n = 0 , 1 , 2 , … (fg)_n=\sum_{i=0}^nf_jg_{n-i},\qquad n=0,1,2,\dots (fg)n=i=0∑nfjg