4.3 Lagrange Interpolation

这一节其实是两部分内容:Lagrange interpolation formula和linear algebra的isomorphism。Lagrange interpolation 公式提供了一种用n+1个点的值去固定所有不高于n阶多项式的方法,其在标准基下的矩阵是Vandermonde matrix,这个矩阵的行列式相信折磨过不少刚学高等代数的学子。
第二部分先把polynomial(本质是一个很长的vector)和polynomial function(从 t t t f ( t ) f(t) f(t))联系起来,并定义乘法 ( f ∼ g ∼ ) ( t ) = f ∼ ( t ) g ∼ ( t ) (f^{\sim}g^{\sim})(t)=f^{\sim}(t)g^{\sim}(t) (fg)(t)=f(t)g(t),通过上一节的Theorem 2可知,polynomial function的空间也是一个linear algebra with identity over F F F. 在给出两个algebra如何才是isomorphic的定义后,可以证明本节最重要的结论(即Theorem 3): f → f ∼ f\to f^{\sim} ff是一个algebra的isomorphism。当然,EXAMPLE 4也很精彩,给予线性算子的多项式和其矩阵以一种新的看法。

Exercises

1.Use the Lagrange interpolation formula to find a polynomial f f f with real coefficients such that f f f has degree ≤ 3 \leq 3 3 and f ( − 1 ) = − 6 , f ( 0 ) = 2 , f ( 1 ) = − 2 , f ( 2 ) = 6 f(-1)=-6,f(0)=2,f(1)=-2,f(2)=6 f(1)=6,f(0)=2,f(1)=2,f(2)=6.
Solution: We have t 0 = − 1 , t 1 = 0 , t 2 = 1 , t 3 = 2 t_0=-1,t_1=0,t_2=1,t_3=2 t0=1,t1=0,t2=1,t3=2, and
P 0 = x ( x − 1 ) ( x − 2 ) ( − 1 − 0 ) ( − 1 − 1 ) ( − 1 − 2 ) = − 1 6 ( x 3 − 3 x 2 + 2 x ) P 1 = ( x + 1 ) ( x − 1 ) ( x − 2 ) ( 0 + 1 ) ( 0 − 1 ) ( 0 − 2 ) = 1 2 ( x 3 − 2 x 2 − x + 2 ) P 2 = ( x + 1 ) x ( x − 2 ) ( 1 + 1 ) ( 1 − 0 ) ( 1 − 2 ) = − 1 2 ( x 3 − x 2 − 2 x ) P 3 = ( x + 1 ) x ( x − 1 ) ( 2 + 1 ) ( 2 − 0 ) ( 2 − 1 ) = 1 6 ( x 3 − x ) P_0=\frac{x(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)}=-\frac{1}{6}(x^3-3x^2+2x) \\ P_1=\frac{(x+1)(x-1)(x-2)}{(0+1)(0-1)(0-2)}=\frac{1}{2}(x^3-2x^2-x+2) \\ P_2=\frac{(x+1)x(x-2)}{(1+1)(1-0)(1-2)}=-\frac{1}{2}(x^3-x^2-2x)\\ P_3=\frac{(x+1)x(x-1)}{(2+1)(2-0)(2-1)}=\frac{1}{6}(x^3-x) P0=(10)(11)(12)x(x1)(x2)=61(x33x2+2x)P1=(0+1)(01)(02)(x+1)(x1)(x2)=21(x32x2x+2)P2=(1+1)(10)(12)(x+1)x(x2)=21(x3x22x)P3=(2+1)(20)(21)(x+1)x(x1)=61(x3x)
Using Lagrange interpolation formula we have
f = f ( − 1 ) P 0 + f ( 0 ) P 1 + f ( 1 ) P 2 + f ( 2 ) P 3 = − 6 P 0 + 2 P 1 − 2 P 2 + 6 P 3 = ( x 3 − 3 x 2 + 2 x ) + ( x 3 − 2 x 2 − x + 2 ) + ( x 3 − x 2 − 2 x ) + ( x 3 − x ) = 4 x 3 − 6 x 2 − 2 x + 2 \begin{aligned}f&=f(-1)P_0+f(0)P_1+f(1)P_2+f(2)P_3\\&=-6P_0+2P_1-2P_2+6P_3\\&=(x^3-3x^2+2x)+(x^3-2x^2-x+2)+(x^3-x^2-2x)+(x^3-x)\\&=4x^3-6x^2-2x+2\end{aligned} f=f(1)P0+f(0)P1+f(1)P2+f(2)P3=6P0+2P12P2+6P3=(x33x2+2x)+(x32x2x+2)+(x3x22x)+(x3x)=4x36x22x+2

2.Let α , β , γ , δ \alpha,\beta,\gamma,\delta α,β,γ,δ be real numbers. We ask when it is possible to fine a polynomial f f f over R R R, of degree not more than 2, such that f ( − 1 ) = α , f ( 1 ) = β , f ( 3 ) = γ f(-1)=\alpha,f(1)=\beta,f(3)=\gamma f(1)=α,f(1)=β,f(3)=γ and f ( 0 ) = δ f(0)=\delta f(0)=δ. Prove that this is possible if and only if
3 α + 6 β − γ − 8 δ = 0. 3\alpha+6\beta-\gamma-8\delta=0. 3α+6βγ8δ=0.
Solution: In the subspace of degree ≤ 2 \leq 2 2, we let t 0 = − 1 , t 1 = 1 , t 2 = 3 t_0=-1,t_1=1,t_2=3 t0=1,t1=1,t2=3 and thus
P 0 = ( x − 1 ) ( x − 3 ) ( − 1 − 1 ) ( − 1 − 3 ) = 1 8 ( x 2 − 4 x + 3 ) P 1 = ( x + 1 ) ( x − 3 ) ( 1 + 1 ) ( 1 − 3 ) = − 1 4 ( x 2 − 2 x − 3 ) P 2 = ( x + 1 ) ( x − 1 ) ( 3 + 1 ) ( 3 − 1 ) = 1 8 ( x 2 − 1 ) P_0=\frac{(x-1)(x-3)}{(-1-1)(-1-3)}=\frac{1}{8}(x^2-4x+3) \\ P_1=\frac{(x+1)(x-3)}{(1+1)(1-3)}=-\frac{1}{4}(x^2-2x-3) \\ P_2=\frac{(x+1)(x-1)}{(3+1)(3-1)}=\frac{1}{8}(x^2-1) P0=(11)(13)(x1)(x3)=81(x24x+3)P1=(1+1)(13)(x+1)(x3)=41(x22x3)P2=(3+1)(31)(x+1)(x1)=81(x21)
So to satisfy f ( − 1 ) = α , f ( 1 ) = β , f ( 3 ) = γ f(-1)=\alpha,f(1)=\beta,f(3)=\gamma f(1)=α,f(1)=β,f(3)=γ, f f f must be

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值