8.3 Linear Functionals and Adjoints

The first portion of this section treats linear functionals on an inner product space and their relation to the inner product. The basic result is that any linear functional f f f on a finite-dimensional inner product space is ‘inner product with a fixed vector in the space,’ i.e., that such an f f f has the form f ( α ) = ( α ∣ β ) f(\alpha)=(\alpha|\beta) f(α)=(αβ) for some fixed β ∈ V \beta\in V βV. We use this result to prove the existence of the ‘adjoint’ of a linear operator T T T on V V V, this being a linear operator T ∗ T^* T such that ( T α ∣ β ) = ( α ∣ T ∗ β ) (T\alpha|\beta)=(\alpha|T^*\beta) (Tαβ)=(αTβ) for all α , β ∈ V \alpha,\beta\in V α,βV. Through the use of an orthonormal basis, this adjoint operator on linear operator (passing from T T T to T ∗ T^* T) is identified with the operation of forming the conjugate transpose of a matrix. We explore slightly the analogy between the adjoint operation and conjugation on complex numbers.

Exercises

1.Let V V V be the space C 2 C^2 C2, with the standard inner product. Let T T T be the linear operator defined by T ϵ 1 = ( 1 , − 2 ) , T ϵ 2 = ( i , − 1 ) T\epsilon_1=(1,-2),T\epsilon_2=(i,-1) Tϵ1=(1,2),Tϵ2=(i,1). If α = ( x 1 , x 2 ) \alpha=(x_1,x_2) α=(x1,x2), find T ∗ α T^*\alpha Tα.
Solution: The matrix of T T T in the standard ordered basis is [ 1 i − 2 − 1 ] \begin{bmatrix}1&i\\-2&-1\end{bmatrix} [12i1], which means the matrix of T ∗ T^* T in the standard ordered basis is [ 1 − 2 − i − 1 ] \begin{bmatrix}1&-2\\-i&-1\end{bmatrix} [1i21], thus
T ∗ α = x 1 T ∗ ϵ 1 + x 2 T ∗ ϵ 2 = x 1 ( 1 , − i ) + x 2 ( − 2 , − 1 ) = ( x 1 − 2 x 2 , − i x 1 − x 2 ) T^*\alpha=x_1T^*\epsilon_1+x_2T^*\epsilon_2=x_1(1,-i)+x_2(-2,-1)=(x_1-2x_2,-ix_1-x_2) Tα=x1Tϵ1+x2Tϵ2=x1(1,i)+x2(2,1)=(x12x2,ix1x2)

2.Let T T T be the linear operator on C 2 C^2 C2 defined by T ϵ 1 = ( 1 + i , 2 ) , T ϵ 2 = ( i , i ) T\epsilon_1=(1+i,2),T\epsilon_2=(i,i) Tϵ1=(1+i,2),Tϵ2=(i,i). Using the standard inner product, find the matrix of T ∗ T^* T in the standard ordered basis. Does T T T commute with T ∗ T^* T?
Solution: The matrix of T T T in the standard ordered basis is [ 1 + i i 2 i ] \begin{bmatrix}1+i&i\\2&i\end{bmatrix} [1+i2ii], which means the matrix of T ∗ T^* T in the standard ordered basis is [ 1 − i 2 − i − i ] \begin{bmatrix}1-i&2\\-i&-i\end{bmatrix} [1ii2i]. T T T does not commute with T ∗ T^* T since
[ 1 + i i 2 i ] [ 1 − i 2 − i − i ] = [ 3 3 + 2 i 3 − 2 i 5 ] , [ 1 − i 2 − i − i ] [ 1 + i i 2 i ] = [ 6 1 + 3 i 1 − 3 i 2 ] \begin{bmatrix}1+i&i\\2&i\end{bmatrix}\begin{bmatrix}1-i&2\\-i&-i\end{bmatrix}=\begin{bmatrix}3&3+2i\\3-2i&5\end{bmatrix},\begin{bmatrix}1-i&2\\-i&-i\end{bmatrix}\begin{bmatrix}1+i&i\\2&i\end{bmatrix}=\begin{bmatrix}6&1+3i\\1-3i&2\end{bmatrix} [1+i2ii][1ii2i]=[332i3+2i5],[1ii2i][1+i2ii]=[613i1+3i2]

3.Let V V V be C 3 C^3 C3 with the standard inner product. Let T T T be the linear operator on V V V whose matrix in the standard ordered basis is defined by A j k = i j + k , ( i 2 = − 1 ) A_{jk}=i^{j+k},(i^2=-1) Ajk=ij+k,(i2=1). Find a basis for the null space of T ∗ T^* T.
Solution: Let B \mathscr B B be the standard ordered basis, then
[ T ] B = [ − 1 − i 1 − i 1 i 1 i − 1 ]    ⟹    [ T ∗ ] B = [ − 1 i 1 i

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值