2.4 Coordinates

先给 V V V定义一个ordered basis B = { α 1 , … , α n } \mathscr B=\{\alpha_1,\dots,\alpha_n\} B={ α1,,αn},其中次序是有用的(即一个sequence),那么对于 α ∈ V \alpha\in V αV,有唯一的一个n-tuple ( x 1 , … , x n ) (x_1,\dots,x_n) (x1,,xn)使得 α = ∑ i = 1 n x i α i \alpha=\sum_{i=1}^nx_i\alpha_i α=i=1nxiαi, 于是称 x i x_i xi是 the i i ith coordinate of α \alpha α relative to the ordered basis B = { α 1 , … , α n } \mathscr B=\{\alpha_1,\dots,\alpha_n\} B={ α1,,αn}. 总结:事实上 V V V的每个ordered basis 决定了一个一一对应: α → ( x 1 , … , x n ) \alpha\to(x_1,\dots,x_n) α(x1,,xn),并且可以保证加法、数乘也在 F n F^n Fn中对应。
我们将 α → ( x 1 , … , x n ) \alpha\to(x_1,\dots,x_n) α(x1,,xn)得到的 ( x 1 , … , x n ) (x_1,\dots,x_n) (x1,,xn)记为 [ α ] B [\alpha]_{\mathfrak B} [α]B, 这个记号在讨论basis的变换时很方便。接下来就进入本节的核心内容:change of basis。如果有 V V V的两组basis: B = { α 1 , … , α n } , B ′ = { α 1 ′ , … , α n ′ } \mathscr B=\{\alpha_1,\dots,\alpha_n\}, \mathscr B'=\{\alpha_1',\dots,\alpha_n'\} B={ α1,,αn},B={ α1,,αn},每个 α j ′ \alpha_j' αj都是 V V V中的向量,因此有唯一的scalars P i j P_{ij} Pij使得 α j ′ = ∑ i = 1 n P i j α i , 1 ≤ j ≤ n \alpha_j'=\sum_{i=1}^nP_{ij}\alpha_i,1\leq j\leq n αj=i=1nPijαi,1jn,如果我们令 [ α ] B ′ = ( x 1 ′ , … , x n ′ ) [\alpha]_{\mathscr B'}=(x_1',\dots,x_n') [α]B=(x1,,xn),那么可得到
α = ∑ j = 1 n x j ′ α j ′ = ∑ j = 1 n x j ′ ∑ i = 1 n P i j α i = ∑ j = 1 n ∑ i = 1 n ( P i j x j ′ ) α i = ∑ i = 1 n ( ∑ j = 1 n P i j x j ′ ) α i \alpha=\sum_{j=1}^nx_j'\alpha_j'=\sum_{j=1}^nx_j'\sum_{i=1}^nP_{ij}\alpha_i=\sum_{j=1}^n\sum_{i=1}^n(P_{ij}x_j')\alpha_i=\sum_{i=1}^n\left(\sum_{j=1}^nP_{ij}x_j'\right)\alpha_i α=j=1nxjαj=j=1nxji=1nPijαi=j=1ni=1n(Pijxj)αi=i=1n(j=1nPijxj)αi
根据 [ α ] B [\alpha]_{\mathscr B} [α]B的唯一性,可知 ∑ j = 1 n P i j x j ′ = x i \sum_{j=1}^nP_{ij}x_j'=x_i j=1nPijxj=xi,如果记矩阵 P = ( P i j ) P=(P_{ij}) P=(Pij),那么 [ α ] B = P [ α ] B ′ [\alpha]_{\mathscr B}=P[\alpha]_{\mathscr B'} [α]B=P[α]B或者 [ α ] B ′ = P − 1 [ α ] B [\alpha]_{\mathscr B'}=P^{-1}[\alpha]_{\mathscr B} [α]B=P1[α]B,其中 P P P的可逆性来源于 [ α ] B ′ = 0 ⇔ [ α ] B = 0 [\alpha]_{\mathscr B'}=0\Leftrightarrow [\alpha]_{\mathscr B}=0 [α]B=0[α]B=0,因此根据第一章的Theorem 7, P P P可逆。上述内容则是这一章的Theorem 7的结论,注意到对 P P P P j = [ α j ′ ] B , j = 1 , … , n P_j=[\alpha_j']_{\mathscr B},j=1,\dots,n Pj=[αj]B,j=1,,n
以上的讨论从另一个角度,可以得到Theorem 8,即如果先假设 P P P是可逆的,则对于 V V V的一个ordered basis B \mathscr B B, 可以有另一个唯一的ordered basis B ′ \mathscr B' B 使得 [ α ] B = P [ α ] B ′ [\alpha]_{\mathscr B}=P[\alpha]_{\mathscr B'} [α]B=P[α]B或者 [ α ] B ′ = P − 1 [ α ] B [\alpha]_{\mathscr B'}=P^{-1}[\alpha]_{\mathscr B} [α]B=P1[α]B V V V中每一个 α \alpha α成立。
Example 18 是standard basis的一个例子。Example 19实际上是二维空间中的rotation变换。从Example 20中可以总结一些规律,如果说矩阵 P P P是可逆的,那么 P j = [ α j ′ ] B , j = 1 , … , n P_j=[\alpha_j']_{\mathscr B},j=1,\dots,n Pj=[αj]B,j=1,,n,特别当 B {\mathscr B} B是standard basis时, P j P_j Pj就直接是新的ordered basis B ′ {\mathscr B'} B中的 α j ′ \alpha_j' αj,求任何一个向量在这个新的basis B ′ {\mathscr B'} B 中的坐标,就用 [ α ] B ′ = P − 1 [ α ] B [\alpha]_{\mathscr B'}=P^{-1}[\alpha]_{\mathscr B} [α]B=P1[α]B即可,特别是 X = ( x 1 , ⋯   , x n ) ′ X=(x_1,\cdots,x_n)' X=(x1,,xn) B ′ {\mathscr B'} B中的坐标是 P − 1 X P^{-1}X P1X.

Exercises

1. Show that the vectors

α 1 = ( 1 , 1 , 0 , 0 ) , α 2 = ( 0 , 0 , 1 , 1 ) α 3 = ( 1 , 0 , 0 , 4 ) , α 4 = ( 0 , 0 , 0 , 2 ) \alpha_1=(1,1,0,0),\quad \alpha_2=(0,0,1,1) \\\alpha_3=(1,0,0,4),\quad \alpha_4=(0,0,0,2) α1=(1,1,0,0),α2=(0,0,1,1)α3=(1,0,0,4),α4=(0,0,0,2)

form a basis for R 4 R^4 R4. Find the coordinates of each of the standard basis vectors in the ordered basis { α 1 , α 2 , α 3 , α 4 } \{\alpha_1,\alpha_2,\alpha_3,\alpha_4\} { α1,α2,α3,α4}.

Solution: We have
[ 1 0 1 0 a 1 0 0 0 b 0 1 0 0 c 0 1 4 2 d ] → [ 1 0 1 0 a 0 0 − 1 0 b − a 0 1 0 0 c 0 0 4 2 d − c ] → [ 1 0 1 0 a 0 0 1 0 a − b 0 1 0 0 c 0 0 2 1 d − c 2 ] → [ 1 0 0 0 b 0 1 0 0 c 0 0 1 0 a − b 0 0 0 1 d − c 2 + 2 b − 2 a ] \begin{aligned}&\begin{bmatrix}1&0&1&0&a\\1&0&0&0&b\\0&1&0&0&c\\0&1&4&2&d\end{bmatrix}\rightarrow\begin{bmatrix}1&0&1&0&a\\0&0&-1&0&b-a\\0&1&0&0&c\\0&0&4&2&d-c\end{bmatrix}\\ \rightarrow &\begin{bmatrix}1&0&1&0&a\\0&0&1&0&a-b\\0&1&0&0&c\\0&0&2&1&\frac{d-c}{2}\end{bmatrix} \rightarrow\begin{bmatrix}1&0&0&0&b\\0&1&0&0&c\\0&0&1&0&a-b\\0&0&0&1&\fra

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值