6.7 Invariant Direct Sums

这一节考虑direct sum中每一个子空间都是在 T T T下invariant的情况,这种情况的好处是: T T T在每一个 W i W_i Wi上都可以限制为一个linear operator T i T_i Ti。所以 T T T可以看成是 T 1 , … , T k T_1,\dots,T_k T1,,Tk的direct sum,即 T T T的变化结果可以分解为在每个独立的 T i T_i Ti W i W_i Wi上的变化结果。这一 W i W_i Wi如何得到,其实Theorem 9已经给出了,即通过投影 E i E_i Ei得到,但要保证invariant的附加条件,则需要(且只需要) T T T和每一个 E i E_i Ei可交换(Theorem 10)。
对于可对角化的矩阵,Theorem 11说明:如果不同特征值是 c 1 , … , c k c_1,\dots,c_k c1,,ck,那么有一个和对角化等价的很复杂的一系列关于projection E 1 , … , E k E_1,\dots,E_k E1,,Ek的结果,每一个 E i E_i Ei恰好是 c i c_i ci的特征向量空间。这个定理很复杂且很难用语言描述,但其目的之一是使用抽象的只关于operator的代数性计算得到结果。
最后展示了 T = c 1 E 1 + ⋯ + c k E k T=c_1E_1+\cdots+c_kE_k T=c1E1++ckEk这种decomposition的比较好的性质:可以直接套用多项式,即 g ( T ) = g ( c 1 ) E 1 + ⋯ + g ( c k ) E k g(T)=g(c_1)E_1+\cdots+g(c_k)E_k g(T)=g(c1)E1++g(ck)Ek,也揭示了Lagrange interpolation polynomial和 E i E_i Ei的关系。仅使用多项式和operator的性质,可以给Theorem 6一个新的证明(即可对角化和minimal polynomial之间的关系)。

Exercises

1.Let E E E be a projection of V V V and let T T T be a linear operator on V V V. Prove that the range of E E E is invariant under T T T if and only if E T E = T E ETE=TE ETE=TE. Prove that both the range and null space of E E E are invariant under T T T if and only if E T = T E ET=TE ET=TE.
Solution: If range  E \text{range }E range E is invariant under T T T, then for any α ∈ V , E α ∈ range  E \alpha\in V,E\alpha\in \text{range }E αV,Eαrange E, thus T E α ∈ range  E TE\alpha\in \text{range }E TEαrange E, then E ( T E α ) = T E α E(TE\alpha)=TE\alpha E(TEα)=TEα since E E E is a projection. Conversely, if E T E = T E ETE=TE ETE=TE, then for β ∈ range  E \beta\in \text{range }E βrange E, there is α ∈ V \alpha\in V αV such that β = E α \beta =E\alpha β=Eα, which means T β = T E α = E T E α T\beta=TE\alpha=ETE\alpha Tβ=TEα=ETEα, thus T β T\beta Tβ is in range  E \text{range }E range E.
Now if E T = T E ET=TE ET=TE, then E T E = E E T = E T ETE=EET=ET ETE=EET=ET, thus the range of E E E is invariant under T T T by what has just proved. Consider the case of null space of E E E. Let α ∈ null  E \alpha\in \text{null }E αnull E, then E α = 0 E\alpha=0 Eα=0, thus 0 = T ( E α ) = E T α 0=T(E\alpha)=ET\alpha 0=T(Eα)=ETα, so T α ∈ null  E T\alpha\in \text{null }E Tαnull E and null  E \text{null }E null E is invariant under T T T.
Conversely, suppose null  E \text{null }E null E and range  E \text{range }E range E is invariant under T T T, then since V = null  E ⊕ range  E V=\text{null }E\oplus \text{range }E V=null Erange E, for any α ∈ V \alpha\in V αV we can write α = β + γ \alpha=\beta+\gamma α=β+γ, in which β ∈ null  E \beta\in \text{null }E βnull E and γ ∈ range  E \gamma \in \text{range }E γrange E. Thus E T α = E T β + E T γ ET\alpha=ET\beta+ET\gamma ETα=ETβ+ETγ, as β ∈ null  E \beta\in \text{null }E βnull E means T β ∈ null  E T\beta\in \text{null }E Tβnull E, we have E T β = 0 ET\beta=0 ETβ=0, and E T γ = T γ = T E γ ET\gamma=T\gamma=TE\gamma ETγ=Tγ=TEγ, notice that T E β = 0 TE\beta=0 TEβ=0, we have
E T α = T E γ = T E γ + T E β = T E α ET\alpha=TE\gamma=TE\gamma+TE\beta=TE\alpha ETα=TEγ=TEγ+TEβ=TEα

2.Let T T T be the linear operator on R 2 R^2 R2, the matrix of which in the standard ordered basis is [ 2 1 0 2 ] \begin{bmatrix}2&1\\0&2\end{bmatrix} [2012]. Let W 1 W_1 W1 be the subspace of R 2 R^2 R2 spanned by the vector ϵ 1 = ( 1 , 0 ) \epsilon_1=(1,0) ϵ1=(1,0).
( a ) Prove that W 1 W_1 W1 is invariant under T T T.

( b ) Prove that there is no subspace W 2 W_2 W2 which is invariant under T T T and which is complementary to W 1 W_1 W1: R 2 = W 1 ⊕ W 2 R^2=W_1\oplus W_2 R2=W1W2.
Solution:
( a ) From the matrix we know that T ϵ 1 = 2 ϵ 1 ∈ W 1 T\epsilon_1=2\epsilon_1\in W_1 Tϵ1=2ϵ

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值