5. The Derivative

这一章开始进入多元微分板块,本节是导数(多元导数)概念,通过一元的导数等价条件(牛顿近似)引入多元导数定义,并介绍了方向导数和偏导数(单位向量的方向导数)。本节的多元导数是以矩阵形式定义的(可看成线性变换),导数定义可以满足:可导必可微、复合函数可导、所有方向导数存在等三个条件。这一节开始的论述就比较详细,几个例子较好地体现了多元微分和一元微分的差异之处。
Theorem 5.1说明可微推出所有方向导数存在,且给出方向导数计算方法。
Theorem 5.2说明可微推出连续。
Theorem 5.3说明值域为R的多维函数的导数计算方法,即如果函数可微,其导数是一个行向量,行向量的子项是偏导数。
Theorem 5.4将上一定理的结论推广到了一般的多维空间。

Exercises

Exercise 1. Let A ⊂ R m A\subset \mathbf{R}^m ARm; let f : A → R n f:A\to\mathbf{R}^n f:ARn. Show that if f ′ ( a ; u ) f'(\mathbf{a};\mathbf{u}) f(a;u) exists, then f ′ ( a ; c u ) f'(\mathbf{a};c\mathbf{u}) f(a;cu) exists and equals c f ′ ( a ; u ) cf'(\mathbf{a};\mathbf{u}) cf(a;u).
Solution: If f ′ ( a , u ) f'(\mathbf{a},\mathbf{u}) f(a,u) exists, then we have
f ′ ( a , u ) = lim ⁡ t → 0 f ( a + t u ) − f ( a ) t f'(\mathbf{a},\mathbf{u})=\lim_{t\to 0}\frac{f(\mathbf{a}+t\mathbf{u})-f(\mathbf{a})}{t} f(a,u)=t0limtf(a+tu)f(a)
thus to calculate f ′ ( a ; c u ) f'(\mathbf{a};c\mathbf{u}) f(a;cu), notice if t → 0 t\to 0 t0, then h : = c t → 0 h:=ct\to 0 h:=ct0, thus
f ′ ( a , c u ) = lim ⁡ t → 0 f ( a + t c u ) − f ( a ) t = c lim ⁡ t → 0 f ( a + t c u ) − f ( a ) t c = c lim ⁡ h → 0 f ( a + h u ) − f ( a ) h = c ′ f ( a ; u ) \begin{aligned}f'(\mathbf{a},c\mathbf{u})&=\lim_{t\to 0}\frac{f(\mathbf{a}+tc\mathbf{u})-f(\mathbf{a})}{t}=c\lim_{t\to 0}\frac{f(\mathbf{a}+tc\mathbf{u})-f(\mathbf{a})}{tc}\\&=c\lim_{h\to 0}\frac{f(\mathbf{a}+h\mathbf{u})-f(\mathbf{a})}{h}=c'f(\mathbf{a};\mathbf{u})\end{aligned} f(a,cu)=t0limtf(a+tcu)f(a)=ct0limtcf(a+tcu)f(a)=ch0limhf(a+hu)f(a)=cf(a;u)

Exercise 2. Let f : R 2 → R f:\mathbf{R}^2\to\mathbf{R} f:R2R be defined by setting f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0 and
f ( x , y ) = x y / ( x 2 + y 2 )  if  ( x , y ) ≠ 0. f(x,y)=xy/(x^2+y^2)\quad\text{ if }\quad (x,y)\neq 0. f(x,y)=xy/(x2+y2) if (x,y)=0.
( a ) For which vectors u ≠ 0 \mathbf{u}\neq\mathbf{0} u=0 does f ′ ( 0 ; u ) f'(\mathbf{0};\mathbf{u}) f(0;u) exist? Evaluate it when it exists.
( b ) Do D 1 f D_1f D1f and D 2 f D_2f D2f exist at 0 \mathbf{0} 0?
( c ) Is f f f differentiable at 0 \mathbf{0} 0?
( d ) Is f f f continuous at 0 \mathbf{0} 0?
Solution:
( a ) Let u = [ h , k ] T \mathbf{u}=[h,k]^T u=[h,k]T, then
lim ⁡ t → 0 f ( 0 + t u ) − f ( 0 ) t = lim ⁡ t → 0 f ( t h , t k ) t = lim ⁡ t → 0 t 2 h k t 2 h 2 + t 2 k 2 = lim ⁡ t → 0 h k t ( h 2 + k 2 ) \lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{u})-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(th,tk)}{t}=\lim_{t\to 0}\frac{t^2hk}{t^2h^2+t^2k^2}=\lim_{t\to 0}\frac{hk}{t(h^2+k^2)} t0limtf(0+tu)f(0)=t0limtf(th,tk)=t0limt2h2+t2k2t2hk=t0limt(h2+k2)hk
this limit exists if h = 0 , k ≠ 0 h=0,k\neq 0 h=0,k=0 or h ≠ 0 , k = 0 h\neq 0,k=0 h=0,k=0, so f ′ ( 0 ; u ) f'(\mathbf{0};\mathbf{u}) f(0;u) exists when u \mathbf{u} u is along the x-asis or the y-axis, and when it exists, f ′ ( 0 ; u ) = 0 f'(\mathbf{0};\mathbf{u})=0 f(0;u)=0.
( b ) We have
D 1 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 1 ) − f ( 0 ) t = lim ⁡ t → 0 f ( t , 0 ) t = 0 D_1f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_1)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(t,0)}{t}=0 D1f(0)=t0limtf(0+te1)f(0)=t0limtf(t,0)=0
D 2 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 2 ) − f ( 0 ) t = lim ⁡ t → 0 f ( t , 0 ) t = 0 D_2f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_2)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(t,0)}{t}=0 D2f(0)=t0limtf(0+te2)f(0)=t0limtf(t,0)=0
( c ) Since not all directional derivative exists, f f f is not differentiable at 0 \mathbf{0} 0, otherwise contradicting Theorem 5.1.
( d ) f f f is not continuous at 0 \mathbf{0} 0, let h = [ a , a ] T \mathbf{h}=[a,a]^T h=[a,a]T, then when a → 0 , h → 0 a\to 0, \mathbf{h}\to 0 a0,h0, but f ( a , a ) = 1 / 2 ≠ f ( 0 ) f(a,a)=1/2\neq f(\mathbf{0}) f(a,a)=1/2=f(0).

Exercise 3. Repeat Exercise 2 for the function f f f defined by setting f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0 and
f ( x , y ) = x 2 y 2 / ( x 2 y 2 + ( y − x ) 2 )  if  ( x , y ) ≠ 0. f(x,y)=x^2y^2/(x^2y^2+(y-x)^2)\quad\text{ if }\quad (x,y)\neq 0. f(x,y)=x2y2/(x2y2+(yx)2) if (x,y)=0.
Solution:
( a ) Let u = [ h , k ] T \mathbf{u}=[h,k]^T u=[h,k]T, then
lim ⁡ t → 0 f ( 0 + t u ) − f ( 0 ) t = lim ⁡ t → 0 f ( t h , t k ) t = lim ⁡ t → 0 t 4 h k t ( t 4 h 2 k 2 + t 2 ( k − h ) 2 ) = lim ⁡ t → 0 t h k t 2 h 2 h 2 + ( k − h ) 2 ) \lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{u})-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(th,tk)}{t}=\lim_{t\to 0}\frac{t^4hk}{t(t^4h^2k^2+t^2(k-h)^2)}=\lim_{t\to 0}\frac{thk}{t^2h^2h^2+(k-h)^2)} t0limtf(0+tu)f(0)=t0limtf(th,tk)=t0limt(t4h2k2+t2(kh)2)t4hk=t0limt2h2h2+(kh)2)thk
this limit exists if k ≠ h k\neq h k=h, so f ′ ( 0 ; u ) f'(\mathbf{0};\mathbf{u}) f(0;u) exists when u \mathbf{u} u is not along line y = x y=x y=x, and when it exists, f ′ ( 0 ; u ) = 1 / ( k − h ) 2 f'(\mathbf{0};\mathbf{u})=1/(k-h)^2 f(0;u)=1/(kh)2.
( b ) We have
D 1 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 1 ) − f ( 0 ) t = lim ⁡ t → 0 f ( t , 0 ) t = 0 D_1f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_1)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(t,0)}{t}=0 D1f(0)=t0limtf(0+te1)f(0)=t0limtf(t,0)=0
D 2 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 2 ) − f ( 0 ) t = lim ⁡ t → 0 f ( 0 , t ) t = 0 D_2f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_2)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(0,t)}{t}=0 D2f(0)=t0limtf(0+te2)f(0)=t0limtf(0,t)=0
( c ) Since not all directional derivative exists, f f f is not differentiable at 0 \mathbf{0} 0, otherwise contradicting Theorem 5.1.
( d ) f f f is not continuous at 0 \mathbf{0} 0, let h = [ a , a ] T \mathbf{h}=[a,a]^T h=[a,a]T, then when a → 0 , h → 0 a\to 0, \mathbf{h}\to 0 a0,h0, but f ( a , a ) = 1 ≠ f ( 0 ) f(a,a)=1\neq f(\mathbf{0}) f(a,a)=1=f(0).

Exercise 4. Repeat Exercise 2 for the function f f f defined by setting f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0 and
f ( x , y ) = x 3 / ( x 2 + y 2 )  if  ( x , y ) ≠ 0. f(x,y)=x^3/(x^2+y^2)\quad\text{ if }\quad (x,y)\neq 0. f(x,y)=x3/(x2+y2) if (x,y)=0.
Solution:
( a ) Let u = [ h , k ] T \mathbf{u}=[h,k]^T u=[h,k]T, then
lim ⁡ t → 0 f ( 0 + t u ) − f ( 0 ) t = lim ⁡ t → 0 f ( t h , t k ) t = lim ⁡ t → 0 t 3 h 3 t ( t 2 h 2 + t 2 k 2 ) = lim ⁡ t → 0 h 3 h 2 + k 2 \lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{u})-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(th,tk)}{t}=\lim_{t\to 0}\frac{t^3h^3}{t(t^2h^2+t^2k^2)}=\lim_{t\to 0}\frac{h^3}{h^2+k^2} t0limtf(0+tu)f(0)=t0limtf(th,tk)=t0limt(t2h2+t2k2)t3h3=t0limh2+k2h3
this limit exists if h = 0 , k ≠ 0 h=0,k\neq 0 h=0,k=0, so f ′ ( 0 ; u ) f'(\mathbf{0};\mathbf{u}) f(0;u) exists when u \mathbf{u} u is along the y-axis, and when it exists, f ′ ( 0 ; u ) = 0 f'(\mathbf{0};\mathbf{u})=0 f(0;u)=0.
( b ) We have
D 1 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 1 ) − f ( 0 ) t = lim ⁡ t → 0 f ( t , 0 ) t = 1 D_1f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_1)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(t,0)}{t}=1 D1f(0)=t0limtf(0+te1)f(0)=t0limtf(t,0)=1
D 2 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 2 ) − f ( 0 ) t = lim ⁡ t → 0 f ( 0 , t ) t = 0 D_2f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_2)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(0,t)}{t}=0 D2f(0)=t0limtf(0+te2)f(0)=t0limtf(0,t)=0
( c ) Since not all directional derivative exists, f f f is not differentiable at 0 \mathbf{0} 0, otherwise contradicting Theorem 5.1.
( d ) f f f is continuous at 0 \mathbf{0} 0, since for every open set V V V which contains f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0, we can find a ϵ > 0 \epsilon>0 ϵ>0 s.t. ( − ϵ , ϵ ) ⊂ V (-\epsilon,\epsilon)\subset V (ϵ,ϵ)V, and for any h = [ a , b ] T , ∣ h ∣ < ϵ \mathbf{h}=[a,b]^T,|\mathbf{h}|<\epsilon h=[a,b]T,h<ϵ, we have
∣ f ( h ) ∣ = ∣ a 3 a 2 + b 2 ∣ ≤ ∣ a ∣ < ∣ h ∣ < ϵ |f(\mathbf{h})|=\left|\frac{a^3}{a^2+b^2}\right|\leq |a|<|\mathbf{h}|<\epsilon f(h)=a2+b2a3a<h<ϵ
Let U = B ( 0 , ϵ ) U=B(\mathbf{0},\epsilon) U=B(0,ϵ), then U U U is open and f ( U ) ⊂ V f(U)\subset V f(U)V.

Exercise 5. Repeat Exercise 2 for the function
f ( x , y ) = ∣ x ∣ + ∣ y ∣ . f(x,y)=|x|+|y|. f(x,y)=x+y.
Solution:
( a ) Let u = [ h , k ] T \mathbf{u}=[h,k]^T u=[h,k]T, then
lim ⁡ t → 0 f ( 0 + t u ) − f ( 0 ) t = lim ⁡ t → 0 f ( t h , t k ) t = lim ⁡ t → 0 ∣ t h ∣ + ∣ t k ∣ t = lim ⁡ t → 0 ∣ t ∣ t ( ∣ h ∣ + ∣ k ∣ ) \lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{u})-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(th,tk)}{t}=\lim_{t\to 0}\frac{|th|+|tk|}{t}=\lim_{t\to 0}\frac{|t|}{t}(|h|+|k|) t0limtf(0+tu)f(0)=t0limtf(th,tk)=t0limtth+tk=t0limtt(h+k)
this limit does not exist if u ≠ 0 \mathbf{u}\neq 0 u=0, so f ′ ( 0 ; u ) f'(\mathbf{0};\mathbf{u}) f(0;u) does not exist.
( b ) We have
D 1 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 1 ) − f ( 0 ) t = lim ⁡ t → 0 f ( t , 0 ) t = lim ⁡ t → 0 ∣ t ∣ t D_1f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_1)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(t,0)}{t}=\lim_{t\to 0}\frac{|t|}{t} D1f(0)=t0limtf(0+te1)f(0)=t0limtf(t,0)=t0limtt
D 2 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 2 ) − f ( 0 ) t = lim ⁡ t → 0 f ( 0 , t ) t = lim ⁡ t → 0 ∣ t ∣ t D_2f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_2)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(0,t)}{t}=\lim_{t\to 0}\frac{|t|}{t} D2f(0)=t0limtf(0+te2)f(0)=t0limtf(0,t)=t0limtt
thus D 1 f ( 0 ) D_1f(\mathbf{0}) D1f(0) and D 2 f ( 0 ) D_2f(\mathbf{0}) D2f(0) does not exist at 0 \mathbf{0} 0.
( c ) Since not all directional derivative exists, f f f is not differentiable at 0 \mathbf{0} 0, otherwise contradicting Theorem 5.1.
( d ) f f f is continuous at 0 \mathbf{0} 0, since for every open set V V V which contains f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0, we can find a ϵ > 0 \epsilon>0 ϵ>0 s.t. ( − ϵ , ϵ ) ⊂ V (-\epsilon,\epsilon)\subset V (ϵ,ϵ)V, and for any h = [ a , b ] T , ∣ h ∣ < ϵ / 2 \mathbf{h}=[a,b]^T,|\mathbf{h}|<\epsilon/2 h=[a,b]T,h<ϵ/2, we have
0 ≤ f ( h ) = ∣ a ∣ + ∣ b ∣ < ϵ    ⟹    f ( h ) ∈ ( − ϵ , ϵ )    ⟹    f ( h ) ∈ V 0\leq f(\mathbf{h})=|a|+|b|<\epsilon\implies f(\mathbf{h})\in(-\epsilon,\epsilon)\implies f(\mathbf{h})\in V 0f(h)=a+b<ϵf(h)(ϵ,ϵ)f(h)V
Let U = B ( 0 , ϵ / 2 ) U=B(\mathbf{0},\epsilon/2) U=B(0,ϵ/2), then U U U is open and f ( U ) ⊂ V f(U)\subset V f(U)V.

Exercise 6. Repeat Exercise 2 for the function
f ( x , y ) = ∣ x y ∣ 1 / 2 . f(x,y)=|xy|^{1/2}. f(x,y)=xy1/2.
Solution:
( a ) Let u = [ h , k ] T \mathbf{u}=[h,k]^T u=[h,k]T, then
lim ⁡ t → 0 f ( 0 + t u ) − f ( 0 ) t = lim ⁡ t → 0 f ( t h , t k ) t = lim ⁡ t → 0 ∣ t h t k ∣ 1 / 2 t = lim ⁡ t → 0 ∣ t ∣ t ∣ h k ∣ \lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{u})-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(th,tk)}{t}=\lim_{t\to 0}\frac{|thtk|^{1/2}}{t}=\lim_{t\to 0}\frac{|t|}{t}|hk| t0limtf(0+tu)f(0)=t0limtf(th,tk)=t0limtthtk1/2=t0limtthk
this limit exists if h = 0 , k ≠ 0 h=0,k\neq 0 h=0,k=0 or h ≠ 0 , k = 0 h\neq 0,k=0 h=0,k=0, so f ′ ( 0 ; u ) f'(\mathbf{0};\mathbf{u}) f(0;u) exists when u \mathbf{u} u is along the x-axis or the y-axis, and when it exists, f ′ ( 0 ; u ) = 0 f'(\mathbf{0};\mathbf{u})=0 f(0;u)=0.
( b ) We have
D 1 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 1 ) − f ( 0 ) t = lim ⁡ t → 0 f ( t , 0 ) t = 0 D_1f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_1)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(t,0)}{t}=0 D1f(0)=t0limtf(0+te1)f(0)=t0limtf(t,0)=0
D 2 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 2 ) − f ( 0 ) t = lim ⁡ t → 0 f ( 0 , t ) t = 0 D_2f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_2)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(0,t)}{t}=0 D2f(0)=t0limtf(0+te2)f(0)=t0limtf(0,t)=0
( c ) Since not all directional derivative exists, f f f is not differentiable at 0 \mathbf{0} 0, otherwise contradicting Theorem 5.1.
( d ) f f f is continuous at 0 \mathbf{0} 0, since for every open set V V V which contains f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0, we can find a ϵ > 0 \epsilon>0 ϵ>0 s.t. ( − ϵ , ϵ ) ⊂ V (-\epsilon,\epsilon)\subset V (ϵ,ϵ)V, and for any h = [ a , b ] T , ∣ h ∣ < ϵ \mathbf{h}=[a,b]^T,|\mathbf{h}|<\epsilon h=[a,b]T,h<ϵ, we have
f ( h ) = ∣ a b ∣ 1 / 2 < ∣ ϵ 2 ∣ 1 / 2 = ϵ    ⟹    f ( h ) ∈ ( − ϵ , ϵ )    ⟹    f ( h ) ∈ V f(\mathbf{h})=|ab|^{1/2}<|\epsilon^2|^{1/2}=\epsilon\implies f(\mathbf{h})\in(-\epsilon,\epsilon)\implies f(\mathbf{h})\in V f(h)=ab1/2<ϵ21/2=ϵf(h)(ϵ,ϵ)f(h)V
Let U = B ( 0 , ϵ / 2 ) U=B(\mathbf{0},\epsilon/2) U=B(0,ϵ/2), then U U U is open and f ( U ) ⊂ V f(U)\subset V f(U)V.

Exercise 7. Repeat Exercise 2 for the function f f f defined by setting f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0 and
f ( x , y ) = x ∣ y ∣ / ( x 2 + y 2 ) 1 / 2  if  ( x , y ) ≠ 0. f(x,y)=x|y|/(x^2+y^2)^{1/2}\quad\text{ if }\quad (x,y)\neq 0. f(x,y)=xy/(x2+y2)1/2 if (x,y)=0.
Solution:
( a ) Let u = [ h , k ] T \mathbf{u}=[h,k]^T u=[h,k]T, then
lim ⁡ t → 0 f ( 0 + t u ) − f ( 0 ) t = lim ⁡ t → 0 f ( t h , t k ) t = lim ⁡ t → 0 t h ∣ t k ∣ t ∣ t ∣ ( h 2 + k 2 ) = h ∣ k ∣ h 2 + k 2 \lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{u})-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(th,tk)}{t}=\lim_{t\to 0}\frac{th|tk|}{t|t|(h^2+k^2)}=\frac{h|k|}{h^2+k^2} t0limtf(0+tu)f(0)=t0limtf(th,tk)=t0limtt(h2+k2)thtk=h2+k2hk
this limit exists as long as u ≠ 0 \mathbf{u}\neq 0 u=0, so f ′ ( 0 ; u ) f'(\mathbf{0};\mathbf{u}) f(0;u) exists and
f ′ ( 0 ; u ) = h ∣ k ∣ h 2 + k 2 f'(\mathbf{0};\mathbf{u})=\frac{h|k|}{h^2+k^2} f(0;u)=h2+k2hk
( b ) We have
D 1 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 1 ) − f ( 0 ) t = lim ⁡ t → 0 f ( t , 0 ) t = 0 D_1f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_1)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(t,0)}{t}=0 D1f(0)=t0limtf(0+te1)f(0)=t0limtf(t,0)=0
D 2 f ( 0 ) = lim ⁡ t → 0 f ( 0 + t e 2 ) − f ( 0 ) t = lim ⁡ t → 0 f ( 0 , t ) t = 0 D_2f(\mathbf{0})=\lim_{t\to 0}\frac{f(\mathbf{0}+t\mathbf{e}_2)-f(\mathbf{0})}{t}=\lim_{t\to 0}\frac{f(0,t)}{t}=0 D2f(0)=t0limtf(0+te2)f(0)=t0limtf(0,t)=0
( c ) We have, for h = ( x , x ) T → ( 0 , 0 ) , x > 0 \mathbf{h}=(x,x)^T\to (0,0),x>0 h=(x,x)T(0,0),x>0, that
f ( 0 + h ) − f ( 0 ) − [ 0 , 0 ] ⋅ h ∣ h ∣ = x ∣ x ∣ ∣ x ∣ x 2 + x 2 = x 2 ∣ x ∣ = 1 2 ↛ 0 \frac{f(\mathbf{0}+\mathbf{h})-f(\mathbf{0})-[0,0]\cdot\mathbf{h}}{|\mathbf{h}|}=\frac{x|x|}{|x|\sqrt{x^2+x^2}}=\frac{x}{\sqrt{2}|x|}=\frac{1}{\sqrt{2}}\nrightarrow 0 hf(0+h)f(0)[0,0]h=xx2+x2 xx=2 xx=2 10
we see f f f is not differentiable at 0 \mathbf{0} 0.
( d ) f f f is continuous at 0 \mathbf{0} 0, since for every open set V V V which contains f ( 0 ) = 0 f(\mathbf{0})=0 f(0)=0, we can find a ϵ > 0 \epsilon>0 ϵ>0 s.t. ( − ϵ , ϵ ) ⊂ V (-\epsilon,\epsilon)\subset V (ϵ,ϵ)V, and for any h = [ a , b ] T , ∣ h ∣ < ϵ \mathbf{h}=[a,b]^T,|\mathbf{h}|<\epsilon h=[a,b]T,h<ϵ, we have
∣ f ( h ) ∣ = ∣ a ∣ b ∣ a 2 + b 2 ∣ ≤ ∣ a ∣ < ϵ    ⟹    f ( h ) ∈ ( − ϵ , ϵ )    ⟹    f ( h ) ∈ V |f(\mathbf{h})|=\left|\frac{a|b|}{\sqrt{a^2+b^2}}\right|\leq |a|<\epsilon\implies f(\mathbf{h})\in(-\epsilon,\epsilon)\implies f(\mathbf{h})\in V f(h)=a2+b2 aba<ϵf(h)(ϵ,ϵ)f(h)V
Let U = B ( 0 , ϵ / 2 ) U=B(\mathbf{0},\epsilon/2) U=B(0,ϵ/2), then U U U is open and f ( U ) ⊂ V f(U)\subset V f(U)V.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值