Hessian矩阵逆矩阵的近似
一、拟牛顿法的基本思路
令H0,H1,H2,…表示Hessian矩阵逆矩阵F(x(k))−1的一系列近似矩阵。我们要讨论的是这些近似矩阵应该满足的条件,这是拟牛顿法的基础。首先,假定目标函数f的Hessian矩阵
g(k+1)−g(k)=Q(x(k+1)−x(k))
令
Δg(k)=g(k+1)−g(k)Δx(k)=x(k+1)−x(k)
可得
Δg(k)=QΔx(k)
记对称正定实矩阵 H0 作为近似矩阵的初始矩阵,在给定的 k 下,矩阵
Q−1Δg(i)=Δx(i),0≤i≤k
因此,近似矩阵 H