最优化学习笔记(十六)——拟牛顿法(2)

本文探讨了拟牛顿法的基本思想及其在二次型问题中的应用。重点介绍了如何通过一系列近似矩阵更新来逼近Hessian矩阵的逆,以及该方法如何在有限次迭代内找到最优解。

Hessian矩阵逆矩阵的近似

一、拟牛顿法的基本思路

    令H0,H1,H2,表示Hessian矩阵逆矩阵F(x(k))1的一系列近似矩阵。我们要讨论的是这些近似矩阵应该满足的条件,这是拟牛顿法的基础。首先,假定目标函数f的Hessian矩阵 F(x) 是常数矩阵,与x无关,即目标函数是二次型函数,F(x)=QQ=QT则:

g(k+1)g(k)=Q(x(k+1)x(k))


Δg(k)=g(k+1)g(k)Δx(k)=x(k+1)x(k)

可得
Δg(k)=QΔx(k)

记对称正定实矩阵 H0 作为近似矩阵的初始矩阵,在给定的 k 下,矩阵 Q1 应该满足:
Q1Δg(i)=Δx(i),0ik

因此,近似矩阵 H
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值