传统聚类算法:用在凸球体性的样本空间中
但是如果样本空间不为凸,算法会陷入局部最优的漩涡
新的聚类算法应运而生:谱聚类
谱聚类:建立在谱图理论基础上。假设数据样本看作图中的顶点V,顶点之间的边E赋予权重值W,得到一个无向加权图G=(V,E)。此图是基于样本之间的相似度的。因此,聚类问题转化成了图划分问题。
常见划分准则:最小割集准则
传统聚类算法:用在凸球体性的样本空间中
但是如果样本空间不为凸,算法会陷入局部最优的漩涡
新的聚类算法应运而生:谱聚类
谱聚类:建立在谱图理论基础上。假设数据样本看作图中的顶点V,顶点之间的边E赋予权重值W,得到一个无向加权图G=(V,E)。此图是基于样本之间的相似度的。因此,聚类问题转化成了图划分问题。
常见划分准则:最小割集准则