谱聚类算法

文章探讨了传统聚类算法在处理非凸样本空间时的局限性,指出这些算法可能会陷入局部最优。为了解决这一问题,文章介绍了谱聚类算法,该算法基于谱图理论,将数据样本转化为无向加权图进行处理,将聚类问题转换为图划分问题,常见的划分标准为最小割集准则。这种方法适用于处理复杂的数据分布情况。
摘要由CSDN通过智能技术生成

传统聚类算法:用在凸球体性的样本空间中

但是如果样本空间不为凸,算法会陷入局部最优的漩涡

新的聚类算法应运而生:谱聚类


谱聚类:建立在谱图理论基础上。假设数据样本看作图中的顶点V,顶点之间的边E赋予权重值W,得到一个无向加权图G=(V,E)。此图是基于样本之间的相似度的。因此,聚类问题转化成了图划分问题。

常见划分准则:最小割集准则

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值