变分问题证明题(二)

变分问题

题目一

( I I I) 对于泛函 J ( v ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − ∫ Ω f v d x J(v)=\frac{1}{2}\int|\nabla v|^2dx-\int_{\Omega}fvdx J(v)=21∣∇v2dxΩfvdx,求 u u u 使得 J ( u ) = m i n v ∈ H 0 1 ( Ω ) J ( v ) J(u)=min_{v\in H_{0}^{1}(\Omega)}J(v) J(u)=minvH01(Ω)J(v) 的解

( I I II II) 求 u ∈ H 0 1 ( Ω ) , s . t . u\in H_{0}^{1}(\Omega), s.t. uH01(Ω),s.t. ∫ Ω ∇ v ⋅ ∇ u d x = ∫ Ω v f d x ,   ∀ v ∈ H 0 1 ( Ω ) \int_{\Omega}\nabla v\cdot \nabla udx=\int_{\Omega} vfdx,\ \forall v\in H_{0}^{1}(\Omega) Ωvudx=Ωvfdx, vH01(Ω)

( I I I III III) 求 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) , s . t .    u u\in C^{2}(\Omega)\cap C_{0}^{1}(\Omega), s.t. \ \ u uC2(Ω)C01(Ω),s.t.  u 满足 P o i s s o n Poisson Poisson 方程的 D i r i c h l e t Dirichlet Dirichlet 问题

题目:
(1) 请证明 ( I I I) 和 ( I I II II) 相互等价
(2) 请写出 P o i s s o n Poisson Poisson 方程的 D i r i c h l e t Dirichlet Dirichlet 问题,并证明若 ( I I II II) 的解 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u\in C^{2}(\Omega)\cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω),则 ( I I II II) 与 ( I I I III III) 等价

解:

(1)为了证明命题 ( I I I) 和 ( I I II II) 相互等价,我们需要证明以下两个方向的充分必要性:

  1. ( I I I) ⇒ \Rightarrow ( I I II II):若 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,则 u u u 满足弱形式的泊松方程。
  2. ( I I II II) ⇒ \Rightarrow ( I I I):若 u u u 满足弱形式的泊松方程,则 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点。

( I I I) ⇒ \Rightarrow ( I I II II)

假设 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
J ( u ) ≤ J ( v ) J(u) \leq J(v) J(u)J(v)

考虑 J ( u + ϵ ϕ ) J(u + \epsilon\phi) J(u+ϵϕ),其中 ϵ \epsilon ϵ 是一个实数, ϕ ∈ H 0 1 ( Ω ) \phi \in H_{0}^{1}(\Omega) ϕH01(Ω)。由于 u u u 是极小值点,我们有
J ( u ) ≤ J ( u + ϵ ϕ ) J(u) \leq J(u + \epsilon\phi) J(u)J(u+ϵϕ)

展开 J ( u + ϵ ϕ ) J(u + \epsilon\phi) J(u+ϵϕ),得到
1 2 ∫ ∣ ∇ ( u + ϵ ϕ ) ∣ 2 d x − ∫ f ( u + ϵ ϕ ) d x \frac{1}{2}\int |\nabla (u + \epsilon\phi)|^2 dx - \int f(u +\epsilon\phi) dx 21∣∇(u+ϵϕ)2dxf(u+ϵϕ)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 ) d x − ∫ f u d x − ϵ ∫ f ϕ d x = \frac{1}{2}\int (|\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2) dx - \int fu dx - \epsilon\int f\phi dx =21(∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2)dxfudxϵfϕdx

ϵ \epsilon ϵ 求导并在 ϵ = 0 \epsilon=0 ϵ=0 处取值,得到
∫ ∇ u ⋅ ∇ ϕ d x − ∫ f ϕ d x = 0 \int \nabla u \cdot \nabla \phi dx - \int f\phi dx = 0 uϕdxfϕdx=0

由于 ϕ \phi ϕ 是任意的,我们得到
∫ ∇ u ⋅ ∇ v d x = ∫ f v d x ,   ∀ v ∈ H 0 1 ( Ω ) \int \nabla u \cdot \nabla v dx = \int fv dx, \ \forall v \in H_{0}^{1}(\Omega) uvdx=fvdx, vH01(Ω)

这证明了 ( I I I) ⇒ \Rightarrow ( I I II II)。

附注 ∣ ∇ ( u + ϵ ϕ ) ∣ 2 = ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 |\nabla (u + \epsilon\phi)|^2 = |\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2 ∣∇(u+ϵϕ)2=∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2

这个等式的推导过程利用了梯度算子的线性性质和内积的性质。具体来说:

  1. 梯度的线性性质:对于任意函数 u u u ϕ \phi ϕ,以及任意实数 ϵ \epsilon ϵ,我们有
    ∇ ( u + ϵ ϕ ) = ∇ u + ϵ ∇ ϕ \nabla(u + \epsilon\phi) = \nabla u + \epsilon\nabla \phi (u+ϵϕ)=u+ϵϕ

  2. 内积的性质:对于任意向量 a \mathbf{a} a b \mathbf{b} b,我们有
    ∣ a + b ∣ 2 = a ⋅ a + 2 a ⋅ b + b ⋅ b |\mathbf{a} + \mathbf{b}|^2 = \mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} a+b2=aa+2ab+bb

结合上述两点,我们可以推导出等式:

∣ ∇ ( u + ϵ ϕ ) ∣ 2 = ∣ ∇ u + ϵ ∇ ϕ ∣ 2 |\nabla (u + \epsilon\phi)|^2 = |\nabla u + \epsilon\nabla \phi|^2 ∣∇(u+ϵϕ)2=∣∇u+ϵϕ2
= ( ∇ u + ϵ ∇ ϕ ) ⋅ ( ∇ u + ϵ ∇ ϕ ) =(\nabla u + \epsilon\nabla \phi) \cdot (\nabla u + \epsilon\nabla \phi) =(u+ϵϕ)(u+ϵϕ)
= ∇ u ⋅ ∇ u + 2 ϵ ( ∇ u ⋅ ∇ ϕ ) + ϵ 2 ( ∇ ϕ ⋅ ∇ ϕ ) =\nabla u \cdot \nabla u + 2\epsilon(\nabla u \cdot \nabla \phi) + \epsilon^2(\nabla \phi \cdot \nabla \phi) =uu+2ϵ(uϕ)+ϵ2(ϕϕ)
= ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 =|\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2 =∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2

因此,这个等式的推导过程主要用到了梯度算子的线性性质和内积的基本性质。

附注

当然可以。这一部分的关键在于使用了泛函的一阶变分原理,即如果 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,那么 J ( v ) J(v) J(v) u u u 处的一阶变分应该为零。具体到这个问题中,我们考虑 J ( u + ϵ ϕ ) J(u + \epsilon\phi) J(u+ϵϕ) 关于 ϵ \epsilon ϵ 的导数,并在 ϵ = 0 \epsilon = 0 ϵ=0 处取值。

首先,我们有
J ( u + ϵ ϕ ) = 1 2 ∫ ∣ ∇ ( u + ϵ ϕ ) ∣ 2 d x − ∫ f ( u + ϵ ϕ ) d x J(u + \epsilon\phi) = \frac{1}{2}\int |\nabla (u + \epsilon\phi)|^2 dx - \int f(u + \epsilon\phi) dx J(u+ϵϕ)=21∣∇(u+ϵϕ)2dxf(u+ϵϕ)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ϵ ∇ u ⋅ ∇ ϕ + ϵ 2 ∣ ∇ ϕ ∣ 2 ) d x − ∫ f u d x − ϵ ∫ f ϕ d x = \frac{1}{2}\int (|\nabla u|^2 + 2\epsilon\nabla u \cdot \nabla \phi + \epsilon^2|\nabla \phi|^2) dx - \int fu dx - \epsilon\int f\phi dx =21(∣∇u2+2ϵuϕ+ϵ2∣∇ϕ2)dxfudxϵfϕdx

接下来,我们对 ϵ \epsilon ϵ 求导。注意到 ∣ ∇ u ∣ 2 |\nabla u|^2 ∣∇u2 ∫ f u d x \int fu dx fudx ϵ \epsilon ϵ 无关,所以它们的导数为零。因此,我们有
d d t J ( u + ϵ ϕ ) = 1 2 ∫ ( 2 ∇ u ⋅ ∇ ϕ + 2 ϵ ∣ ∇ ϕ ∣ 2 ) d x − ∫ f ϕ d x \frac{d}{dt}J(u +\epsilon\phi) = \frac{1}{2}\int (2\nabla u \cdot \nabla \phi + 2\epsilon|\nabla \phi|^2) dx - \int f\phi dx dtdJ(u+ϵϕ)=21(2∇uϕ+2ϵ∣∇ϕ2)dxfϕdx
= ∫ ∇ u ⋅ ∇ ϕ d x + ϵ ∫ ∣ ∇ ϕ ∣ 2 d x − ∫ f ϕ d x = \int \nabla u \cdot \nabla \phi dx + \epsilon\int |\nabla \phi|^2 dx - \int f\phi dx =uϕdx+ϵ∣∇ϕ2dxfϕdx

现在,我们在 ϵ = 0 \epsilon = 0 ϵ=0 处取值,得到
d d t J ( u + ϵ ϕ ) ∣ t = 0 = ∫ ∇ u ⋅ ∇ ϕ d x − ∫ f ϕ d x \left.\frac{d}{dt}J(u +\epsilon\phi)\right|_{t=0} = \int \nabla u \cdot \nabla \phi dx - \int f\phi dx dtdJ(u+ϵϕ) t=0=uϕdxfϕdx

根据一阶变分原理,由于 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,这个导数应该为零。因此,我们得到
∫ ∇ u ⋅ ∇ ϕ d x − ∫ f ϕ d x = 0 \int \nabla u \cdot \nabla \phi dx - \int f\phi dx = 0 uϕdxfϕdx=0

这就是我们想要证明的结果。这个结果表明,如果 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点,那么 u u u 必须满足上述积分等式,这正是弱形式的泊松方程。

( I I II II) ⇒ \Rightarrow ( I I I)

假设 u u u 满足弱形式的泊松方程,即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
∫ ∇ u ⋅ ∇ v d x = ∫ f v d x \int \nabla u \cdot \nabla v dx = \int fv dx uvdx=fvdx

我们需要证明 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点。考虑任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),令 w = v − u w = v - u w=vu,则有
J ( v ) − J ( u ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f ( v − u ) d x J(v) - J(u) = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int f(v - u) dx J(v)J(u)=21∣∇v2dx21∣∇u2dxf(vu)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 ) d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x = \frac{1}{2}\int (|\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2) dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx =21(∣∇u2+2∇uw+∣∇w2)dx21∣∇u2dxfwdx
= ∫ ∇ u ⋅ ∇ w d x + 1 2 ∫ ∣ ∇ w ∣ 2 d x − ∫ f w d x = \int \nabla u \cdot \nabla w dx + \frac{1}{2}\int |\nabla w|^2 dx - \int fw dx =uwdx+21∣∇w2dxfwdx
= 1 2 ∫ ∣ ∇ w ∣ 2 d x = \frac{1}{2}\int |\nabla w|^2 dx =21∣∇w2dx
= 1 2 ∫ ∣ ∇ ( v − u ) ∣ 2 d x ≥ 0 = \frac{1}{2}\int |\nabla (v - u)|^2 dx \geq 0 =21∣∇(vu)2dx0

因此,对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),都有 J ( v ) ≥ J ( u ) J(v) \geq J(u) J(v)J(u),即 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点。

附注 这一步骤的详细推导
J ( v ) − J ( u ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f ( v − u ) d x J(v) - J(u) = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int f(v - u) dx J(v)J(u)=21∣∇v2dx21∣∇u2dxf(vu)dx
= 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 ) d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x = \frac{1}{2}\int (|\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2) dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx =21(∣∇u2+2∇uw+∣∇w2)dx21∣∇u2dxfwdx
这一步骤的关键在于利用了梯度的线性性质和内积的性质来展开和重组积分项。具体来说:

首先,我们有 w = v − u w = v - u w=vu,因此 ∇ w = ∇ v − ∇ u \nabla w = \nabla v - \nabla u w=vu

然后,我们考虑泛函 J ( v ) J(v) J(v) J ( u ) J(u) J(u) 的差:
J ( v ) − J ( u ) = 1 2 ∫ ∣ ∇ v ∣ 2 d x − ∫ f v d x − ( 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f u d x ) J(v) - J(u) = \frac{1}{2}\int |\nabla v|^2 dx - \int fv dx - \left(\frac{1}{2}\int |\nabla u|^2 dx - \int fu dx\right) J(v)J(u)=21∣∇v2dxfvdx(21∣∇u2dxfudx)
= 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f ( v − u ) d x = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int f(v - u) dx =21∣∇v2dx21∣∇u2dxf(vu)dx
= 1 2 ∫ ∣ ∇ v ∣ 2 d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x = \frac{1}{2}\int |\nabla v|^2 dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx =21∣∇v2dx21∣∇u2dxfwdx (因为 v − u = w v - u = w vu=w

接下来,我们利用 ∇ v = ∇ u + ∇ w \nabla v = \nabla u + \nabla w v=u+w 来展开 ∣ ∇ v ∣ 2 |\nabla v|^2 ∣∇v2
∣ ∇ v ∣ 2 = ∣ ∇ u + ∇ w ∣ 2 = ( ∇ u + ∇ w ) ⋅ ( ∇ u + ∇ w ) |\nabla v|^2 = |\nabla u + \nabla w|^2 = (\nabla u + \nabla w) \cdot (\nabla u + \nabla w) ∣∇v2=∣∇u+w2=(u+w)(u+w)
= ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 = |\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2 =∣∇u2+2∇uw+∣∇w2

因此,我们有
J ( v ) − J ( u ) = 1 2 ∫ ( ∣ ∇ u ∣ 2 + 2 ∇ u ⋅ ∇ w + ∣ ∇ w ∣ 2 ) d x − 1 2 ∫ ∣ ∇ u ∣ 2 d x − ∫ f w d x J(v) - J(u) = \frac{1}{2}\int (|\nabla u|^2 + 2\nabla u \cdot \nabla w + |\nabla w|^2) dx - \frac{1}{2}\int |\nabla u|^2 dx - \int fw dx J(v)J(u)=21(∣∇u2+2∇uw+∣∇w2)dx21∣∇u2dxfwdx

这就是我们想要证明的等式。这个等式展示了如何通过引入差函数 w = v − u w = v - u w=vu 来重组泛函 J ( v ) J(v) J(v) J ( u ) J(u) J(u) 的差,并利用梯度的线性性质和内积的性质来简化表达式。

这证明了 ( I I II II) ⇒ \Rightarrow ( I I I)。

综上所述,我们证明了命题 ( I I I) 和 ( I I II II) 相互等价。

附注 这一步骤的详细推导
∫ ∇ u ⋅ ∇ w d x + 1 2 ∫ ∣ ∇ w ∣ 2 d x − ∫ f w d x \int \nabla u \cdot \nabla w dx + \frac{1}{2}\int |\nabla w|^2 dx - \int fw dx uwdx+21∣∇w2dxfwdx
= 1 2 ∫ ∣ ∇ w ∣ 2 d x = \frac{1}{2}\int |\nabla w|^2 dx =21∣∇w2dx

当然可以。这一步的关键在于利用 u u u 满足弱形式的泊松方程这一条件来简化表达式。具体来说:

我们已经知道 u u u 满足弱形式的泊松方程,即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
∫ ∇ u ⋅ ∇ v d x = ∫ f v d x \int \nabla u \cdot \nabla v dx = \int fv dx uvdx=fvdx

由于 w = v − u ∈ H 0 1 ( Ω ) w = v - u \in H_{0}^{1}(\Omega) w=vuH01(Ω)(因为 H 0 1 ( Ω ) H_{0}^{1}(\Omega) H01(Ω) 是一个线性空间),我们可以将 w w w 代入上述弱形式的泊松方程中,得到
∫ ∇ u ⋅ ∇ w d x = ∫ f w d x \int \nabla u \cdot \nabla w dx = \int fw dx uwdx=fwdx

因此,我们可以将 ∫ ∇ u ⋅ ∇ w d x − ∫ f w d x \int \nabla u \cdot \nabla w dx - \int fw dx uwdxfwdx 这一项简化为 0 0 0。所以,我们有
∫ ∇ u ⋅ ∇ w d x + 1 2 ∫ ∣ ∇ w ∣ 2 d x − ∫ f w d x \int \nabla u \cdot \nabla w dx + \frac{1}{2}\int |\nabla w|^2 dx - \int fw dx uwdx+21∣∇w2dxfwdx
= 0 + 1 2 ∫ ∣ ∇ w ∣ 2 d x = 0 + \frac{1}{2}\int |\nabla w|^2 dx =0+21∣∇w2dx
= 1 2 ∫ ∣ ∇ w ∣ 2 d x = \frac{1}{2}\int |\nabla w|^2 dx =21∣∇w2dx

这就是我们想要证明的等式。这个等式表明,如果 u u u 满足弱形式的泊松方程,那么泛函 J ( v ) J(v) J(v) J ( u ) J(u) J(u) 的差可以简化为 1 2 ∫ ∣ ∇ w ∣ 2 d x \frac{1}{2}\int |\nabla w|^2 dx 21∣∇w2dx,这是一个非负的量,因为它是一个积分的平方项。这个结果对于证明 u u u 是泛函 J ( v ) J(v) J(v) 的极小值点是至关重要的。

(2)
为了证明命题 ( I I II II) 和 ( I I I III III) 相互等价,我们需要证明以下两个方向的充分必要性:

  1. ( I I II II) ⇒ \Rightarrow ( I I I III III):若 u ∈ H 0 1 ( Ω ) u \in H_{0}^{1}(\Omega) uH01(Ω) 是命题 ( I I II II) 的解,并且 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω),则 u u u 满足 Poisson 方程的 Dirichlet 问题。
  2. ( I I I III III) ⇒ \Rightarrow ( I I II II):若 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω) 满足 Poisson 方程的 Dirichlet 问题,则 u u u 是命题 ( I I II II) 的解。

( I I II II) ⇒ \Rightarrow ( I I I III III)

假设 u ∈ H 0 1 ( Ω ) u \in H_{0}^{1}(\Omega) uH01(Ω) 是命题 ( I I II II) 的解,并且 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω)。即对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),有
∫ Ω ∇ v ⋅ ∇ u d x = ∫ Ω v f d x \int_{\Omega} \nabla v \cdot \nabla u dx = \int_{\Omega} vfdx Ωvudx=Ωvfdx

由于 u ∈ C 2 ( Ω ) u \in C^{2}(\Omega) uC2(Ω),我们可以利用 Green 公式将左边的积分转换为
∫ Ω ∇ v ⋅ ∇ u d x = − ∫ Ω v Δ u d x + ∫ ∂ Ω v ∂ u ∂ n d S \int_{\Omega} \nabla v \cdot \nabla u dx = -\int_{\Omega} v\Delta u dx + \int_{\partial\Omega} v \frac{\partial u}{\partial n} dS Ωvudx=ΩvΔudx+ΩvnudS

由于 u ∈ C 0 1 ( Ω ) u \in C_{0}^{1}(\Omega) uC01(Ω),即 u u u ∂ Ω \partial\Omega Ω 上为零,因此边界项消失,我们有
− ∫ Ω v Δ u d x = ∫ Ω v f d x ,   ∀ v ∈ H 0 1 ( Ω ) -\int_{\Omega} v\Delta u dx = \int_{\Omega} vfdx, \ \forall v \in H_{0}^{1}(\Omega) ΩvΔudx=Ωvfdx, vH01(Ω)

由于这个等式对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω) 都成立,我们可以得出 Δ u = − f \Delta u = -f Δu=f Ω \Omega Ω 中成立。结合 u ∈ C 0 1 ( Ω ) u \in C_{0}^{1}(\Omega) uC01(Ω),即 u u u ∂ Ω \partial\Omega Ω 上为零,我们得到 u u u 满足 Poisson 方程的 Dirichlet 问题。

( I I I III III) ⇒ \Rightarrow ( I I II II)

假设 u ∈ C 2 ( Ω ) ∩ C 0 1 ( Ω ) u \in C^{2}(\Omega) \cap C_{0}^{1}(\Omega) uC2(Ω)C01(Ω) 满足 Poisson 方程的 Dirichlet 问题,即
{ Δ u = − f in  Ω u = 0 on  ∂ Ω \begin{cases} \Delta u = -f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases} {Δu=fu=0in Ωon Ω

我们需要证明 u u u 是命题 ( I I II II) 的解。对于任意 v ∈ H 0 1 ( Ω ) v \in H_{0}^{1}(\Omega) vH01(Ω),利用 Green 公式,我们有
∫ Ω ∇ v ⋅ ∇ u d x = − ∫ Ω v Δ u d x + ∫ ∂ Ω v ∂ u ∂ n d S \int_{\Omega} \nabla v \cdot \nabla u dx = -\int_{\Omega} v\Delta u dx + \int_{\partial\Omega} v \frac{\partial u}{\partial n} dS Ωvudx=ΩvΔudx+ΩvnudS

由于 u u u 满足 Dirichlet 边界条件,即 u = 0 u = 0 u=0 ∂ Ω \partial\Omega Ω 上,边界项消失,我们有
∫ Ω ∇ v ⋅ ∇ u d x = − ∫ Ω v Δ u d x \int_{\Omega} \nabla v \cdot \nabla u dx = -\int_{\Omega} v\Delta u dx Ωvudx=ΩvΔudx

Δ u = − f \Delta u = -f Δu=f 代入上式,得到
∫ Ω ∇ v ⋅ ∇ u d x = ∫ Ω v f d x \int_{\Omega} \nabla v \cdot \nabla u dx = \int_{\Omega} vfdx Ωvudx=Ωvfdx

这证明了 u u u 是命题 ( I I II II) 的解。

综上所述,我们证明了命题 ( I I II II) 和 ( I I I III III) 相互等价,前提是 ( I I II II) 的解 u u u 属于 C 2 ( Ω ) ∩ C 0 1 ( Ω ) C^{2}(\Omega) \cap C_{0}^{1}(\Omega) C2(Ω)C01(Ω)

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值