高光谱图像分类,使用GAN和Swin-Transformer改进

文章提出了一种名为ADGAN的新方法,用于解决基于GAN的高光谱图像分类中的不平衡训练数据和模式崩溃问题。通过调整鉴别器为单个分类器和引入自适应DropBlock(AdapDrop)正则化,ADGAN提高了HSI分类性能。AdapDrop能适应不同形状的地面对象,改善了传统DropBlock的局限性。在多个HSI数据集上的实验验证了ADGAN的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        近年来,基于生成对抗网络(GAN)的高光谱图像(HSI)分类取得了很大进展。基于GAN的分类方法可以在一定程度上缓解有限训练样本的困境。然而,一些研究指出现有的基于GAN的HSI分类方法受到不平衡训练数据问题的严重影响。GAN中的鉴别器总是自相矛盾,并试图将假标签与少数类样本相关联,从而影响分类性能。另一个关键问题是GAN方法中的模式崩溃。生成器只能在数据空间的一个狭窄范围内生成样本,这严重阻碍了基于GAN的HSI分类方法的发展。在本文中,我们提出了一种自适应DropBlock增强生成对抗网络(ADGAN)用于HSI分类。首先,为了解决不平衡训练数据问题,我们将鉴别器调整为单个分类器,它不会自相矛盾。其次,在生成器和鉴别器中引入了自适应DropBlock(AdapDrop)作为正则化方法,以缓解模式崩溃问题。AdapDrop通过自适应形状生成Drop掩码,而不是固定尺寸的区域,它缓解了DropBlock在处理具有各种形状的地面对象时的限制。在三个HSI数据集上的实验结果表明,我们提出的ADGAN相对于现有的基于GAN的方法取得了更优秀的分类性能。

 

 

### 高光谱图像融合中的GAN实现与应用 高光谱图像融合旨在通过结合不同传感器的数据来提高图像的空间光谱分辨率。生成对抗网络(GAN)作为一种强大的深度学习模型,在处理复杂的图像转换任务方面表现出色。 #### 使用GAN进行高光谱图像融合的优势 GAN由两个主要部分组成:生成器判别器。这种架构特别适合于解决高维数据分布的学习问题,对于复杂场景下的高光谱图像融合尤为有效[^2]。具体来说: - **增强细节保留**:传统方法可能丢失一些细微结构信息;而基于GAN的方法能够更好地保持这些细节。 - **自适应调整**:可以根据训练样本自动调节参数设置,从而获得更优的结果质量。 #### 基本框架设计 为了利用GAN来进行高效的高光谱图像融合,可以采用如下基本流程: 1. 数据预处理阶段会先对原始输入——即低分辨率的多光谱影像以及对应的全色影像——做标准化操作; 2. 接着构建一个编码解码式的生成器网络,该网络负责从给定的一组低分辨率多光谱带重建出具有更高空间分辨率的新版本; 3. 同时设立另一个子网作为判别器,用来区分真实样本与合成产物之间的差异,并反馈指导生成过程不断优化直至难以分辨真假为止。 ```python import torch.nn as nn class Generator(nn.Module): def __init__(self, input_channels=48, output_channels=48): super(Generator, self).__init__() # 定义卷积层其他必要的组件... def forward(self, x): # 实现前向传播逻辑... class Discriminator(nn.Module): def __init__(self, input_channels=48): super(Discriminator, self).__init__() # 构建用于评估图片真伪性的网络结构 def forward(self, x): # 编写预测函数体... ``` 上述代码片段展示了如何定义简单的生成器判别器类。实际项目中还需要考虑更多因素如损失函数的选择、正则化技术的应用等以确保最终效果达到预期目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值