近年来,基于生成对抗网络(GAN)的高光谱图像(HSI)分类取得了很大进展。基于GAN的分类方法可以在一定程度上缓解有限训练样本的困境。然而,一些研究指出现有的基于GAN的HSI分类方法受到不平衡训练数据问题的严重影响。GAN中的鉴别器总是自相矛盾,并试图将假标签与少数类样本相关联,从而影响分类性能。另一个关键问题是GAN方法中的模式崩溃。生成器只能在数据空间的一个狭窄范围内生成样本,这严重阻碍了基于GAN的HSI分类方法的发展。在本文中,我们提出了一种自适应DropBlock增强生成对抗网络(ADGAN)用于HSI分类。首先,为了解决不平衡训练数据问题,我们将鉴别器调整为单个分类器,它不会自相矛盾。其次,在生成器和鉴别器中引入了自适应DropBlock(AdapDrop)作为正则化方法,以缓解模式崩溃问题。AdapDrop通过自适应形状生成Drop掩码,而不是固定尺寸的区域,它缓解了DropBlock在处理具有各种形状的地面对象时的限制。在三个HSI数据集上的实验结果表明,我们提出的ADGAN相对于现有的基于GAN的方法取得了更优秀的分类性能。