完整代码见文末
基于脑电图(EEG)信号与深度学习模型进行抑郁症的自动诊断。通过使用来自数据集的EEG信号,结合多种数据预处理技术,包括将信号转换为适合自然语言处理的时间序列数据和频谱图数据,进一步应用了多种深度学习模型(如卷积神经网络CNN、ResNet-18、Transformer和长短时记忆网络LSTM)进行模型训练,并实现抑郁症的自动识别。项目的核心目标是为抑郁症的早期诊断提供一种高效且准确的计算机辅助诊断工具。
基于脑电图(EEG)信号与深度学习模型进行抑郁症的自动诊断。通过使用来自数据集的EEG信号,结合多种数据预处理技术,包括将信号转换为适合自然语言处理的时间序列数据和频谱图数据,进一步应用了多种深度学习模型(如卷积神经网络CNN、ResNet-18、Transformer和长短时记忆网络LSTM)进行模型训练,并实现抑郁症的自动识别。项目的核心目标是为抑郁症的早期诊断提供一种高效且准确的计算机辅助诊断工具。