码科智能 | 细节超越SAM2!商汤开源视频抠图新标杆:MatAnyone一次指定全程追踪,发丝级还原

本文来源公众号“码科智能”,仅用于学术分享,侵权删,干货满满。

原文链接:细节超越SAM2!商汤开源视频抠图新标杆:MatAnyone一次指定全程追踪,发丝级还原

去年 Meta 开源的 SAM2 模型,处理能力从图像分割拓展到视频分割。其可实时处理任意长视频,视频中没见过的对象也能轻松分割追踪,具体可查看:

图片

但若想在影视剪辑、游戏制作等领域真正落地应用还需解决很多问题,比如如何抠图至头发丝级别精度,这就是普通分割无法解决的问题,需要难度更进一步的视频抠图来处理,今天我们来聊聊这个问题。

图片

上图是SAM2的效果,但面对复杂背景和多目标干扰时,视频抠像技术始终面临"细节丢失"和"目标漂移"两大难题

南洋理工大学与商汤科技最新发布的MatAnyone,仅需首帧标注即可实现发丝级透明度预测,且具备跨帧一致性追踪及多目标精准锁定。MatAnyone只需在第一帧通过人物遮罩指定抠像目标,即可在整个视频中实现稳定、高质量的目标提取。

图片

一、MatAnyone概述及核心亮点

MatAnyone是一个实用的支持目标分配的人体视频抠图框架,在核心区域语义和细粒度边界细节方面均有稳定的表现。

为了让视频抠像技术能被更好地使用,MatAnyone 专注解决的是这样一个场景:给定目标人物在第一帧的掩膜,后续的抠像自动锁定目标完成。无需逐帧修正,准确、自然、连贯地抠出整段视频。

图片

MatAnyone 借鉴视频分割中的记忆机制,在此基础上提出了专为视频抠图设计的一致性记忆传播机制。该模块自适应地整合前一帧的记忆,对于变化幅度较大的区域(通常出现在目标边缘,如头发、衣摆),模型更依赖当前帧从记忆库中检索到的记忆信息。而对变化较小的区域(如身体内部),则更多保留上一帧的记忆信息,避免重复建模,减少误差传播。

图片

总结一下,MatAnyone三大核心突破:

一帧锁定精准可控:仅需在首帧指定目标,后续全程自动跟踪,无需逐帧调整。无论是单人特写还是复杂多目标场景,都能精准锁定指定对象。
智能记忆稳定不抖:动态区分视频中的稳定区域(如身体主干)和易变细节(如发丝、衣摆)。主干部分依赖历史帧保持稳定,边缘细节实时优化
发丝级超清细节:通过真实分割数据+高质合成数据联合训练,在头发、薄纱等半透明区域实现像素级自然过渡。
# 论文链接
https://arxiv.org/abs/2501.14677
# 代码链接
https://github.com/pq-yang/MatAnyone
# 项目链接
https://pq-yang.github.io/projects/MatAnyone/

二、MatAnyone效果

MatAnyone 在视频目标分割中不仅要求核心区域的语义精准,更要求边界细节的提取(如发丝、衣角的半透明过渡),与SAM2的对比:

图片

面对多人物或复杂背景的视频内容的实例抠图,不同模型效果对比:

图片

当SAM2引爆图像分割革命,MatAnyone这种设置既兼顾用户可控性,又具有更强的实用性和鲁棒性,正在视频抠图领域竖起新的技术标杆。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值