冒名顶替上大学罗彩霞
by Cat Hicks
通过猫希克斯
Impostor综合征对男性的打击与对女性的打击一样……以及数千次技术采访中的其他发现 (Impostor syndrome strikes men just as hard as women… and other findings from thousands of technical interviews)
The modern technical interview is a rite of passage for software engineers and (hopefully!) the precursor to a great job. But it’s also a huge source of stress and endless questions for new candidates. Just searching “how do I prepare for a technical interview” turns up millions of Medium posts, coding bootcamp blogs, Quora discussions, and entire books.
现代技术面试是软件工程师和(希望!)出色工作的先驱。 但这也给新候选人带来了巨大的压力和无尽的疑问。 仅搜索“我如何为技术面试做准备”,就会发现数百万条中型帖子,编码训练营博客,Quora讨论以及整本书。
Despite all this conversation, people struggle to know how they’re even doing in interviews. In a previous post, we found that a surprisingly large number of interviewing.io’s users consistently underestimate their performance, making them more likely to drop out of the process and ultimately harder to hire.
尽管进行了所有这样的交谈,人们仍很难知道他们在面试中的表现如何。 在上一篇文章中 ,我们发现面试.io的用户数量惊人地不断低估了他们的表现,这使他们更有可能退出流程,最终变得更难雇用。
Now, and with considerably more data (over 10k interviews led by real software engineers!), we wanted to go deeper: what seems to make candidates worse at gauging their own performance?
现在,有了更多的数据(由真正的软件工程师领导的超过10,000次采访!),我们想更深入: 是什么使考生在衡量自己的表现时变得更糟?
We know some general facts that make accuracy a challenge: people aren’t always great at assessing or even remembering their performance on difficult cognitive tasks like writing code [1]. Technical interviews can be particularly hard to judge if candidates don’t have much experience with questions with no single right answer.
我们知道一些使准确性成为挑战的一般事实:人们并不总是擅长评估甚至记住自己在编写代码[ 1 ]等困难的认知任务中的表现。 如果候选人在没有单一正确答案的问题上没有太多经验,则很难进行技术面试。
Since many companies don’t share any kind of detailed post-interview feedback (beyond a yes/no) with candidates for liability reasons, many folks never get any sense of how they did, what they did well, or what could have been better [2, 3]. Indeed, pulling back the curtain on interviewing, across the industry, was one of the primary motivators for building interviewing.io!
由于出于责任原因,许多公司没有与候选人分享任何详细的面试后反馈(除了是/否),所以许多人永远不会对自己的工作方式,做得如何或可以做得更好有所了解[ 2 , 3 ]。 确实,在整个行业中拉开采访的帷幕是建立采访的主要动机之一。
But to our knowledge, there’s little data out there looking specifically at how people feel after real interviews on this scale, across different companies — so we gathered it, giving us the ability to test interesting industry assumptions about engineers and coding confidence.
但是据我们所知,很少有数据专门用来研究人们在不同公司之间进行如此大规模的真实采访后的感受,因此我们将其收集起来,使我们能够测试有关工程师和编码信心的有趣行业假设。
One big factor we were interested in was impostor syndrome. Impostor syndrome resonates with a lot of engineers [4], indicating that many wonder whether they truly match up to colleagues and discount even strong evidence of competence as a fluke. Impostor syndrome can make us wonder whether we can count on the positive performance feedback that we’re getting, and how much our opportunities have come from our own effort, versus luck.
我们感兴趣的一大因素是冒名顶替综合症。 Impostor综合征在许多工程师中引起共鸣[ 4 ],这表明许多人想知道他们是否真正与同事相匹配,甚至不strong惜有能力证明自己是a幸。 冒名顶替综合症可以使我们怀疑,我们是否可以依靠我们所获得的积极绩效反馈,以及我们自己的努力与运气相比有多少机会。
Of particular interest to us was whether this would show up for women on our platform. There’s a lot of research evidence that candidates from underrepresented backgrounds experience a greater lack of belonging that feeds impostor syndrome [5], and this could show up as inaccuracy about judging their own interview performance.
我们特别感兴趣的是,这是否会在我们的平台上出现在女性身上。 有很多研究证据表明,来自背景不足的候选人会缺乏归属感,这会增加冒名顶替综合症[ 5 ],这在判断自己的面试表现时可能不准确。
设置 (The setup)
interviewing.io is a platform where people can practice technical interviewing anonymously, and if things go well, get jobs at top companies in the process. We started it because résumés suck and because we believe that anyone, regardless of how they look on paper, should have the opportunity to prove their mettle.
面试.io是一个平台,人们可以在该平台上匿名进行技术面试,如果一切顺利,则可以在此过程中为顶级公司找到工作。 我们之所以开始,是因为简历很烂,因为我们相信任何人,无论他们在纸上的样子如何,都应该有机会证明自己的能力。
When an interviewer and an interviewee match on interviewing.io, they meet in a collaborative coding environment with voice, text chat, and a whiteboard and jump right into a technical question (feel free to watch this process in action on our interview recordings page). After each interview, people leave one another feedback, and each party can see what the other person said about them once they both submit their reviews.
当采访者和受访者在visitoring.io上进行比赛时,他们将在语音,文本聊天和白板的协作编码环境中见面,然后跳入一个技术问题(请在我们的采访记录页面上随意观看此过程的实际操作 ) 。 每次面试后,人们都会互相留下反馈,当他们都提交评论后,每一方都可以看到对方对他们的评价。
Here’s an example of an interviewer feedback form:
这是一个面试官反馈表的示例:
Immediately after the interview, candidates answered a question about how well they thought they’d done on the same 1–4 scale:
面试后,应聘者立即回答了一个问题,他们认为自己在1-4范围内的表现如何:
For this post, we looked at over 10k technical interviews led by real software engineers from top companies. In each interview, a candidate was rated by an interviewer on their problem-solving ability, technical ability, and communication skills, as well as whether the interviewer would advance them to the next round. This gave us a measure of how different someone’s self-rating was from the rating that the interviewer actually gave them, and in which direction. In other words, how skewed was their estimation from their true performance?
在这篇文章中,我们研究了由顶级公司的真正软件工程师领导的超过10,000次技术采访。 在每次面试中,面试官都会根据候选人的解决问题能力,技术能力和沟通技巧,以及面试官是否将其推进下一轮进行评估。 这使我们可以衡量某人的自我评价与面试官实际给予他们的评价有何不同,以及在哪个方向。 换句话说,他们的估计与实际表现有何偏差?
Going in, we had some hunches about what might matter:
走进去,我们对可能重要的事情有一些预感:
Gender. Would women be harder on their coding performance than men?
性别 女人在编码方面会比男人难吗?
Having been an interviewer before. It seemed reasonable that having been on the other side would pull back the curtain on interviews.
以前曾做过面试官 。 站在另一侧似乎可以拉开采访的帷幕,这是合理的。
Being employed at a top company. Similar to above.
受雇于顶级公司 。 与上面类似。
Being a top-performing interviewee on interviewing.io — people who are better interviewees overall might have more confidence and awareness of when they’ve gotten things right (or wrong!)
身为面试 .io中表现最好的被访者-总体上来说更好的被访者可能对什么时候做对了(或错了!)有更多的信心和认识。
Being in the Bay Area or not. Since tech is still so geographically centered on the Bay Area, we considered that folks who live in a more engineering-saturated culture could have greater familiarity with professional norms around interviews.
是否在湾区 。 由于技术在地理位置上仍然以海湾地区为中心,因此我们认为,生活在工程饱和度更高的文化中的人们可能会对采访中的专业准则更加熟悉。
Within the interview itself, question quality and interviewer quality. Presumably, a better interviewer is also a better communicator, whereas a confusing interviewer might throw off a candidates’ entire assessment of their performance. We also looked at whether it was a practice interview, or for a specific company role.
在面试本身中, 问题的质量和面试官的质量 。 大概,一个更好的面试官也是一个更好的沟通者,而一个令人困惑的面试官可能会拖延候选人对他们表现的整体评估。 我们还研究了这是一次实践面试,还是特定的公司角色。
For some candidates, we could also look at few measures of their personal brand within the industry, like their number of GitHub and Twitter followers. Maybe people with a strong online presence are more sure of themselves when they interview?
对于某些候选人,我们还可以查看他们在行业中个人品牌的一些衡量标准,例如他们在GitHub和Twitter上的关注人数。 也许拥有强大在线形象的人在面试时会更加自信?
那么我们发现了什么呢? (So what did we find?)
妇女在评估其技术能力方面与男子一样准确 (Women are just as accurate as men at assessing their technical ability)
Contrary to expectations around gender and confidence, we didn’t find a reliable statistically significant gender difference in accuracy. At first, it looked like female candidates were more likely to underestimate their performance, but when we controlled for other variables, like experience and rated technical ability, it turned out that the key differentiator was experience. More experienced engineers are more accurate about their interview performance, and men are more likely to be experienced engineers. But experienced female engineers are just as accurate about their technical ability.
与对性别和自信的期望相反,我们没有发现在准确性方面存在可靠的统计学上显着的性别差异。 最初,女性候选人似乎更可能低估她们的表现,但是当我们控制其他变量时,例如经验和额定的技术能力,事实证明 关键的区别在于经验 。 越有经验的工程师对他们的面试表现越准确,而男性越有可能是有经验的工程师。 但是经验丰富的女工程师的技术能力同样准确。
Based on previous research, we hypothesized that impostor syndrome and a greater lack of belonging could result in female candidates penalizing their interview performance, but we didn’t find that pattern [6].
根据先前的研究,我们假设冒名顶替综合症和更多的归属感可能导致女性应聘者对其面试表现进行惩罚,但我们没有发现这种模式[ 6 ]。
However, our finding echoes a research project from the Stanford Clayman Institute for Gender Research, which looked at 1,795 mid-level tech workers from high tech companies. They found that women in tech aren’t necessarily less accurate when assessing their own abilities, but do have significantly different ideas about what success requires (e.g., long working hours and risk-taking). In other words, women in tech may not doubt their own abilities but might have different ideas about what’s expected.
但是,我们的发现与斯坦福克莱曼性别研究学院的一个研究项目相呼应,该研究所研究了来自高科技公司的1,795名中层技术人员。 他们发现,从事科技行业的女性在评估自身能力时不一定会准确性较低,但对于成功需要什么(例如,长时间工作和冒险),他们的想法却截然不同。 换句话说, 从事科技行业的女性可能不会怀疑自己的能力,但可能会对期望的结果有不同的看法 。
And a survey from Harvard Business Review asking over a thousand professionals about their job application decisions also made this point. Their results emphasized that gender gaps in evaluation scenarios could be more about different expectations for how scenarios like interviews are judged.
哈佛商业评论公司( Harvard Business Review)的一项调查也询问了上千名专业人员的工作申请决定。 他们的结果强调,评估情景中的性别差距可能更多地取决于对诸如访谈等情景的判断的不同期望 。
That said, we did find one interesting difference: women went through fewer practice interviews overall than men did. The difference was small but statistically significant, and harkens back to our earlier finding that women leave interviewing.io roughly 7 times as often as men do, after a bad interview.
就是说,我们确实发现了一个有趣的区别:与男性相比,女性接受的实习面试总体上较少。 差异很小,但在统计上却很重要,这可以追溯到我们之前的发现,即在一次糟糕的采访之后,女性离开采访的频率大约是男性的7倍 。
But in that same earlier post, we also found that masking voices didn’t impact interview outcomes. This whole cluster of findings affirms what we suspected and what the folks doing in-depth studies of gender in tech have found: it’s complicated. Women’s lack of persistence in interviews can’t be explained only by impostor syndrome about their own abilities, but it’s still likely that they’re interpreting negative feedback more severely and making different assumptions about interviews.
但是在同一篇较早的文章中,我们还发现掩盖声音并不会影响面试结果。 整个研究结果肯定了我们的怀疑以及对技术中的性别进行深入研究的人们所发现的东西: 这很复杂 。 女性不能在面试中坚持不懈,不能仅仅通过冒充者自身能力的综合症来解释,但是她们仍然很可能会更认真地解释负面反馈,并对面试做出不同的假设。
Here’s the distribution of accuracy distance for both female and male candidates on our platform (zero indicates a rating that matches the interviewer’s score, while negative values indicate underestimated score, and positive values indicate an overestimated score). The two groups look pretty much identical:
这是我们平台上女性和男性候选人的准确度距离分布(零表示与访调员的分数相匹配的等级,负值表示分数被低估,正值表示分数被高估)。 两组看起来几乎完全相同:
还有什么没关系的? (What else didn’t matter?)
Another surprise: having been an interviewer didn’t help. Even people who had been interviewers themselves don’t seem to get an accuracy boost from that.
另一个惊喜: 成为一名面试官并没有帮助 。 甚至那些曾经是面试官的人似乎也无法从中获得准确性的提高。
Personal brand was another non-finding. People with more GitHub followers weren’t more accurate than people with few to no GitHub followers.
个人品牌是另一个不受欢迎的地方。 拥有GitHub粉丝的人并不比没有GitHub粉丝或没有GitHub粉丝的人更准确。
Nor did interviewer rating matter (i.e. how well an interviewer was reviewed by their candidates), although to be fair, interviewers are generally rated quite highly on the site.
访调员的等级也没有关系 (即,对他们的候选人对访调员的评价如何),尽管公平地说,访调员在网站上的评价通常很高。
那么,对面试表现的准确判断在统计学上有何显着提升? 通常,经验。 (So what was a statistically significant boost to accurate judgments of interview performance? Mostly, experience.)
Experienced engineers have a better sense for how well they did in interviews, compared with engineers earlier in their careers [7]. But it doesn’t seem to just be that you’re better at gauging your interview performance because you’re better at writing code; although there is a small lift from this, with higher rated engineers being more accurate. But when you look at junior engineers, even top-performing junior candidates struggled to accurately assess their performance. [8]
与在职业生涯早期的工程师相比,经验丰富的工程师对自己在面试中的表现有更好的认识[ 7 ]。 但这似乎不只是您在评估面试表现方面更好,因为您在编写代码方面也更好。 尽管由此产生的提升很小,但评分更高的工程师却更加准确。 但是,当您查看初级工程师时, 即使是表现最好的初级候选人也难以准确评估其绩效。 [ 8 ]
Our data mirrors a trend seen in Stack Overflow’s 2018 Developer survey. They asked respondents several questions about confidence and competition with other developers, and noted that more experienced engineers feel less competitive and more confident [9].
我们的数据反映了Stack Overflow在2018年开发人员调查中看到的趋势。 他们向受访者询问了几个有关与其他开发人员之间的信心和竞争的问题,并指出,经验丰富的工程师会感到竞争力减弱和信心增强[ 9 ]。
This isn’t necessarily surprising: experience is correlated with skill level, after all, and highly skilled people are likely to be more confident. But our analysis let us control for performance and code skill within career groups, and we still found that experienced engineers were better at predicting their interview scores.
这并不一定令人惊讶:毕竟,经验与技能水平相关,并且高技能的人可能会更有信心。 但是,通过我们的分析,我们可以控制职业群体中的性能和代码技能,并且我们仍然发现,经验丰富的工程师更擅长预测面试成绩。
There are probably multiple factors here: experienced engineers have been through more interviews, have led interviews themselves, and have a stronger sense of belonging, all of which may combat impostor syndrome.
这里可能有多种因素:经验丰富的工程师经历了更多的采访,亲自领导了采访,并且拥有更强的归属感,所有这些都可能与冒名顶替综合症作斗争。
内幕知识和情境似乎也有帮助。 (Insider knowledge and context also seems to help.)
Being in the Bay Area and being at a top company both made people more accurate. Like the experienced career group, engineers who seem more likely to have contextual industry knowledge are also more accurate. We found small but statistically significant lifts from factors like being located in the Bay Area and working at a top company. However, the lift from working at a top company seems to mostly measure a lift from overall technical ability: being at a top company is essentially a proxy measure for being a more experienced, higher quality engineer.
身在海湾地区和成为顶级公司,都使人们变得更加准确。 像经验丰富的职业团队一样,似乎更可能具有上下文行业知识的工程师也更加准确。 我们发现由于位于湾区和在顶级公司工作等因素而产生的小但具有统计意义的升幅。 但是,在顶级公司工作所带来的提升似乎在很大程度上衡量了整体技术能力的提升:在顶级公司中的表现本质上是成为更有经验,更高素质的工程师的代表。
最终,随着您在面试中变得更好并进入公司面试,您的确变得更加准确。 (Finally, as you get better at interviewing and move into company interviews, you do get more accurate.)
People were more accurate about their performance in company interviews compared to practice interviews, and their overall ranking on the interviewing.io site also predicted improved accuracy: interviewing.io also gives users an overall ranking, based on their performance over multiple interviews and weighted toward more recent measures. People who scored in the top 25% were more likely to be accurate about their interview performance.
人们在公司面试中的表现相对于实践面试更为准确,并且他们在面试中的总体排名也得到了提高。io.io网站还预测了准确性:根据他们在多次面试中的表现,io也为用户提供了整体排名,并且对最近的措施。 得分最高的25%的人更可能对他们的面试表现准确。
In general, how are people at gauging their interview performance overall? We’ve looked at this before, with roughly a thousand interviews, and now, with ten thousand, the finding continues to hold up. Candidates were accurate about how they did in only 46% of interviews, and underestimated themselves in 35% of interviews (and the remaining 19%, of course, are the overestimators).
总的来说,人们如何衡量自己的面试表现? 之前 , 我们已经进行了大约一千次采访,而现在,一万次, 我们一直在研究这个问题 。 候选人仅在46%的访谈中表现得很准确,而在35%的访谈中低估了自己(剩下的19%当然是高估了)。
Still, candidates are generally on the right track — it’s not like people who score a 4 are always giving themselves a 1 [10]. Self-ratings are statistically significantly predictive for actual interview scores (and positively correlated), but that relationship is noisy.
不过,候选人通常都走在正确的道路上-并非得分为4的人总是给自己1 [ 10 ]。 自我评估从统计学上可以预测实际的面试成绩(并呈正相关),但是这种关系很嘈杂。
含义 (The implications)
Accurately judging your own interview performance is a skill in its own right, and one that engineers need to learn from experience and context in the tech industry. But we’ve also learned that many of the assumptions we made about performance accuracy didn’t hold up to scrutiny — female engineers had just as accurate a view of their own skills as male engineers, and engineers who had led more interviews or were well known on GitHub weren’t particularly better at gauging their performance.
准确地判断自己的面试表现本身就是一项技能,而工程师则需要从技术行业的经验和背景中学到一项技能。 但是我们也了解到, 我们对性能准确性所做的许多假设都无法接受严格的审查 -女工程师对自身技能的看法与男工程师一样准确,而领导更多访谈或表现出色的工程师在GitHub上众所周知的在衡量其性能方面并不是特别出色。
What does this mean for the industry as a whole? First off, impostor syndrome appears to be the bleary-eyed monster that attacks across gender and ability, and how good you are, or where you are, or how famous you are isn’t that important. Seniority does help mitigate some of the pain, but impostor syndrome affects everyone, regardless of who they are or where they’re from.
这对整个行业意味着什么? 首先,冒名顶替综合症似乎是一头眼盲的怪物,攻击性别和能力,您的好坏,位置或知名度并不重要。 资历确实有助于减轻某些痛苦,但是冒名顶替综合症会影响每个人,无论他们是谁或来自哪里。
So, maybe it’s time for a kinder, more empathetic interviewing culture. And a culture that’s kinder to everyone, because though marginalized groups who haven’t been socialized in technical interviewing are hit the hardest by shortcomings in the interview process, no one is immune to self-doubt.
因此,也许是时候建立一种更善解人意的采访文化了。 一种对所有人都友好的文化,因为尽管没有在技术面试中进行过社交的边缘化群体在面试过程中的缺点受到的打击最大 ,但没有人可以避免自我怀疑。
We’ve previously discussed what makes someone a good interviewer, and empathy plays a disproportionately large role. And we’ve seen that providing immediate post-interview feedback is really important for keeping candidates from dropping out. So, whether you’re motivated by kindness and ideology or cold, hard pragmatism, a bit more kindness and understanding toward your candidates is in order.
前面我们已经讨论了使某人成为优秀的面试官的原因,而同理心扮演着不成比例的重要角色 。 而且我们已经看到, 提供即时面试后反馈对于防止候选人辍学非常重要 。 因此,无论您是出于友善和意识形态的动机,还是出于冷漠,坚决的实用主义的动机,都应该对候选人有所帮助。
Cat Hicks, the author of this guest post, is a researcher and data scientist with a focus on learning. She’s published empirical research on learning environments, and led research on the cognitive work of engineering teams at Google and Travr.se. She holds a PhD in Psychology from UC San Diego.
这篇客座文章的作者 Cat Hicks 是一位研究人员和数据科学家,专注于学习。 她发表了有关学习环境的实证研究,并领导了Google和Travr.se的工程团队的认知工作研究。 她拥有圣地亚哥大学圣地亚哥分校的心理学博士学位。
冒名顶替上大学罗彩霞