人形机器人视觉处理——颜色避障

上期我们通过HSV的识别机制让机器人实现了垃圾分类的功能,让机器人更具备人性的特点。这期我们将深化软件中函数与赋值的使用。让机器人在碰到不同颜色时能够做出不同的反应,以达到躲避障碍物的功能。
预期效果:使用两种不同颜色,结合颜色的HSV识别和颜色的占比率识别,在检测到红色障碍时需要避开,找到蓝色障碍物设置下蹲动作。


在这里插入图片描述
效果展示

一、道具制作
制作6个高52厘米,直径为7.5的圆柱体障碍物,红色障碍物4个,蓝色障碍物2个。

在这里插入图片描述
避障道具

为了防止在颜色避障过程中受到其他颜色的干扰,在场地边搭建高为59厘米的围栏

在这里插入图片描述
颜色避障场地

二、程序设计

1、红色障碍识别

机器人在不转头的状态下识别到在红色的占比率小于170时:


### 关于人形机器人中的视觉传感器技术 人形机器人中使用的视觉传感器技术主要依赖于多种类型的摄像头和深度传感设备,这些设备共同构成了机器人的“眼睛”,使其能够感知周围环境并做出相应的反应。以下是对几种常见视觉传感器及其应用的详细介绍: #### 1. **RGB-D相机** RGB-D相机是一种集成了彩色图像捕捉功能与深度测量能力的传感器。它不仅可以获取场景的颜色信息,还能提供像素级别的距离数据。这类传感器通常用于帮助机器人实现三维空间建模以及物体检测等功能[^1]。 ```python import cv2 from open3d import read_point_cloud, draw_geometries def process_rgbd_image(rgbd_file_path): """ 处理RGBD图像文件以提取颜色和深度信息。 参数: rgbd_file_path (str): RGBD图像路径 返回: point_cloud: 点云对象表示的空间结构 """ rgb = cv2.imread(f"{rgbd_file_path}_color.png") depth = cv2.imread(f"{rgbd_file_path}_depth.png", cv2.IMREAD_ANYDEPTH) pcd = create_point_cloud_from_rgbd(rgb, depth) return pcd point_cloud_data = process_rgbd_image("sample_scene") draw_geometries([point_cloud_data]) ``` #### 2. **立体视觉系统** 由两个或多个同步工作的摄像机组成,模仿人类双眼视差原理来计算景深。这种方法适用于复杂环境中动态目标跟踪任务,在工业自动化中有广泛应用前景[^3]。 #### 3. **单目/双目视觉** 尽管单目视觉无法直接获得绝对尺度下的深度估计,但它可以通过运动恢复结构(SfM)算法重建稀疏地图;而双目则可以直接利用几何关系得到较为准确的距离值。两者均被广泛应用于导航避障等方面. #### 4. **热成像仪** 虽然不如上述几类常用,但在某些特殊场合下(比如夜间作业或者高温区域监测),红外线波段敏感度高的热成像仪也能作为补充手段之一加入到整体方案当中去[^2]. 综上所述,不同类型视觉传感器各有优劣,实际部署时往往需要根据具体应用场景需求综合考虑选用哪一种组合形式最为合适。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值