机器人运动控制流程:路径规划、轨迹规划和轨迹跟踪及它们涉及的算法

机器人运动控制是机器人技术中的核心组成部分,它决定了机器人如何有效地、安全地完成各种任务。一个完整的机器人运动控制流程通常包含三个关键阶段:路径规划轨迹规划轨迹跟踪。这三个阶段层层递进,共同协作,最终实现机器人按照用户期望的方式运动。

下面我将详细解释这三个阶段,并介绍它们涉及的常用算法:

1. 路径规划 (Path Planning)

  • 定义:路径规划是指在给定的工作空间内,不考虑时间,寻找一条从起始点到目标点的可行路径。这里的“可行”通常意味着路径必须是无碰撞的,即路径上的任何点都不能与环境中的障碍物发生碰撞。

  • 目标:为机器人找到一条安全、可行的运动路径,使其能够从起始位置到达目标位置,同时避开所有障碍物。路径规划关注的是空间上的可行性,而不直接考虑机器人的动力学约束(如速度、加速度)。

  • 输入

    • 工作空间环境地图:通常以栅格地图、拓扑地图或特征地图等形式表示。地图中包含障碍物的位置和形状信息。
    • 起始点和目标点:机器人的起始位置和期望到达的目标位置。
  • 输出:一条由一系列路径点组成的路径。这条路径通常是离散的,例如一系列栅格单元格或者关键路点。

  • 涉及的算法:路径规划算法种类繁多,根据不同的应用场景和环境表示方法,可以选择不同的算法。以下是一些常用的路径规划算法及其简要介绍:

    • 基于图搜索的算法 (Graph-based Search Algorithms):这类算法将工作空间离散化成图结构(例如栅格地图或拓扑地图),然后在图上搜索最优路径。

      • Dijkstra 算法:一种经典的广度优先搜索算法,用于寻找图中单源最短路径。它可以找到从起始点到图中所有其他点的最短路径。在机器人路径规划中,可以将栅格地图或者拓扑地图视为图,每个节点代表一个可达位置,边代表相邻位置之间的连接。Dijkstra 算法保证找到的是最优路径(最短路径),但计算效率相对较低,尤其是在地图规模较大时。

        ​编辑 Opens in a new window ​编辑blog.csdn.net

        Dijkstra 算法示意图

      • A 算法* (A-Star Algorithm):是 Dijkstra 算法的改进版本,它引入了启发式函数来引导搜索方向,从而提高搜索效率。A* 算法在搜索过程中,不仅考虑从起始点到当前节点的实际代价(如路径长度),还估计从当前节点到目标点的启发式代价(例如曼哈顿距离或欧氏距离)。通过综合考虑实际代价和启发式代价,A* 算法能够更快速地找到路径,尤其是在复杂环境中。A* 算法在保证找到最优路径的前提下,比 Dijkstra 算法更高效,是机器人路径规划中最常用的算法之一。

        ​编辑 Opens in a new window ​编辑www.cnblogs.com

        A* 算法示意图

    • 基于采样的算法 (Sampling-based Algorithms):这类算法不显式地构建工作空间的完整地图,而是通过在工作空间中随机采样,然后连接采样点来构建路径。这类算法特别适用于高维空间和复杂环境。

      • 概率路图法 (PRM, Probabilistic Roadmaps):PRM 算法是一种多查询算法,它预先在工作空间中随机采样大量的点,并连接附近的点,构建一个概率路图。在查询路径时,只需要在路图上搜索即可。PRM 算法的优点是构建路图的过程可以离线完成,查询速度快,适用于需要多次路径查询的场景。但是,PRM 算法找到的路径不一定是最优的,且难以保证在狭窄通道中找到路径。

        ​编辑 Opens in a new window ​编辑vslam.net

        PRM 算法示意图

      • 快速扩展随机树算法 (RRT, Rapidly-exploring Random Trees):RRT 算法是一种单查询算法,它从起始点开始,通过随机采样和扩展的方式,快速构建一棵搜索树,直到树扩展到目标点附近。RRT 算法的优点是搜索速度快,能够有效地探索未知空间,并能够处理高维空间和复杂环境。RRT 算法找到的路径通常不是最优的,但通常可以满足实际应用的需求。RRT 算法及其变种(如 RRT-Connect, RRT*)是目前机器人路径规划领域非常流行的算法。

        ​编辑 Opens in a new window ​编辑blog.csdn.net

        RRT 算法示意图

    • 其他路径规划算法:除了上述算法,还有一些其他的路径规划算法,例如基于势场的算法 (Potential Field methods)、 Voronoi 图法 (Voronoi Diagram methods) 等。这些算法各有优缺点,适用于不同的场景。

2. 轨迹规划 (Trajectory Planning)

  • 定义:轨迹规划是在路径规划的基础上,考虑时间,为机器人生成一条光滑、连续的运动轨迹。轨迹不仅描述了机器人在空间中的位置,还描述了机器人在每个时刻的位置、速度、加速度等信息。

  • 目标:在满足机器人自身动力学约束(如最大速度、最大加速度、最大 jerk)和环境约束(如避障、平稳性)的前提下,生成一条可执行的运动轨迹。轨迹规划关注的是时间动力学上的可行性。

  • 输入

    • 路径规划生成的路径:通常是由一系列路径点组成的离散路径。
    • 机器人动力学约束:例如最大速度、最大加速度、最大 jerk 等。
    • 环境约束:例如避障要求、平稳性要求等。
  • 输出:一条时间参数化的轨迹。轨迹可以用时间的多项式函数、样条曲线或者其他数学函数来表示,描述了机器人在每个时刻的位置、速度、加速度等信息。

  • 涉及的算法:轨迹规划算法主要关注如何生成光滑、连续,并满足动力学约束的轨迹。以下是一些常用的轨迹规划算法:

    • 多项式插值 (Polynomial Interpolation):使用多项式函数来拟合路径点,生成连续的轨迹。常用的多项式插值方法包括三次多项式插值、五次多项式插值等。多项式插值方法简单易实现,生成的轨迹光滑连续,可以满足速度、加速度的连续性要求。但是,高阶多项式插值可能会出现 Runge 现象,导致轨迹在某些区域出现较大的振荡。

    • 样条曲线插值 (Spline Interpolation):使用样条曲线(例如 B-样条曲线、贝塞尔曲线)来拟合路径点,生成光滑的轨迹。样条曲线具有局部控制性,修改一个控制点只影响曲线局部形状,方便轨迹的调整和优化。样条曲线插值生成的轨迹光滑连续,可以满足高阶连续性要求,并且具有良好的形状控制能力。

      • B-样条曲线 (B-Spline Curve):是一种常用的样条曲线,具有许多优点,例如局部控制性、凸包性等。B-样条曲线可以灵活地调整曲线的形状,生成各种复杂的轨迹。

        ​编辑 Opens in a new window ​编辑blog.csdn.net

        B样条曲线轨迹示例

      • 贝塞尔曲线 (Bezier Curve):另一种常用的样条曲线,在 CAD/CAM 领域应用广泛。贝塞尔曲线的形状由控制点决定,曲线始终位于控制点的凸包内。贝塞尔曲线的优点是形状控制直观,计算简单。

        ​编辑 Opens in a new window ​编辑blog.csdn.net

        贝塞尔曲线轨迹示例

    • 梯形速度轮廓规划 (Trapezoidal Velocity Profile Planning):一种常用的分段线性速度轮廓规划方法。它将速度轮廓分为加速段、匀速段、减速段三个阶段,速度轮廓呈现梯形形状。梯形速度轮廓规划方法简单易实现,计算量小,适用于对轨迹精度要求不高,但对运动时间有约束的场景。梯形速度轮廓规划生成的轨迹加速度不连续,可能引起冲击。

      ​编辑 Opens in a new window ​编辑blog.csdn.net

      梯形速度轮廓轨迹示例

    • S-型速度轮廓规划 (S-Curve Velocity Profile Planning):一种改进的速度轮廓规划方法,也称为 Jerk-limited 轨迹规划。它将加速度轮廓也进行分段线性化,速度轮廓呈现 S 形。S-型速度轮廓规划生成的轨迹加速度连续,jerk 有限,运动更加平稳,冲击更小,适用于对运动平稳性要求较高的场景。

      ​编辑 Opens in a new window ​编辑blog.csdn.net

      S型速度轮廓轨迹示例

3. 轨迹跟踪 (Trajectory Tracking)

  • 定义:轨迹跟踪是指控制机器人实际运动,使其尽可能地精确地沿着规划好的轨迹运动。轨迹跟踪是一个闭环控制过程,需要实时地测量机器人的实际位置和姿态,并将其与期望轨迹进行比较,然后根据误差调整控制输入,驱动机器人运动。

  • 目标:减小机器人的实际轨迹与期望轨迹之间的偏差,保证机器人能够精确地按照规划好的轨迹运动,即使存在外部干扰和模型误差。轨迹跟踪关注的是控制上的精度和鲁棒性。

  • 输入

    • 轨迹规划生成的期望轨迹:时间参数化的轨迹,包含了期望的位置、速度、加速度等信息。
    • 机器人模型:用于描述机器人运动学和动力学特性的数学模型。
    • 传感器反馈:例如编码器、IMU、视觉传感器等,用于测量机器人的实际位置和姿态。
  • 输出控制指令 (例如电机力矩、关节角度指令) 给机器人的执行器,驱动机器人运动。

  • 涉及的算法:轨迹跟踪算法的核心是如何设计控制器,使得机器人能够有效地抑制误差,精确地跟踪期望轨迹。以下是一些常用的轨迹跟踪控制算法:

    • PID 控制 (PID Control):一种经典的反馈控制算法,广泛应用于工业控制领域。PID 控制器根据比例 (P)积分 (I)微分 (D) 三个环节的线性组合,生成控制输出。PID 控制器结构简单,参数容易整定,鲁棒性好,适用于许多轨迹跟踪场景。但是,PID 控制器对于非线性系统和时变系统的控制效果可能不佳。

      ​编辑 Opens in a new window ​编辑bbs.elecfans.com

      PID 控制器结构示意图

    • 前馈控制 (Feedforward Control):一种开环控制方法,它根据期望轨迹和机器人模型,预测所需的控制输入,并直接施加给机器人。前馈控制可以有效地补偿系统中的可预测误差,提高轨迹跟踪的精度。但是,前馈控制依赖于精确的机器人模型,对于模型误差和外部干扰的抑制能力较差。

    • 前馈-反馈控制 (Feedforward-Feedback Control):结合了前馈控制和反馈控制的优点。前馈控制用于补偿可预测误差,反馈控制 (例如 PID 控制) 用于抑制不可预测误差和外部干扰。前馈-反馈控制可以显著提高轨迹跟踪的精度和鲁棒性,是机器人轨迹跟踪中最常用的控制策略之一。

      ​编辑 Opens in a new window ​编辑www.elecfans.com

      前馈反馈控制结构示意图

    • 模型预测控制 (MPC, Model Predictive Control):一种先进的优化控制算法。MPC 算法在每个控制周期,基于机器人模型和当前状态,预测未来一段时间内的系统行为,并优化未来的控制输入,使得预测的轨迹尽可能地接近期望轨迹,同时满足各种约束条件 (例如动力学约束、环境约束)。MPC 算法可以有效地处理多输入多输出系统、约束系统和非线性系统,具有良好的控制性能和鲁棒性。但是,MPC 算法计算量较大,对实时性要求较高的场景可能难以应用。

      ​编辑 Opens in a new window ​编辑blog.csdn.net

      模型预测控制示意图

    • 自适应控制 (Adaptive Control):用于处理模型参数不确定或者时变的系统。自适应控制器能够在线估计系统参数,并动态调整控制器参数,以适应系统特性的变化。自适应控制可以有效地提高轨迹跟踪的鲁棒性,尤其是在环境变化或者机器人模型参数不确定的情况下。常见的自适应控制方法包括模型参考自适应控制 (MRAC)、自校正控制 (STR) 等。

      ​编辑 Opens in a new window ​编辑cje.ustb.edu.cn

      自适应控制系统框图

总结:

路径规划、轨迹规划和轨迹跟踪是机器人运动控制流程中不可或缺的三个阶段。它们之间是层层递进、相互依赖的关系:

  1. 路径规划 为机器人指明方向,找到一条从起点到终点的可行路径;
  2. 轨迹规划 在路径规划的基础上,赋予时间信息,生成一条光滑、连续、满足动力学约束的运动轨迹;
  3. 轨迹跟踪 则负责精确执行轨迹规划生成的期望轨迹,确保机器人实际运动与期望运动尽可能一致。

这三个阶段共同协作,才能实现机器人高效、安全、精确的运动控制,完成各种复杂的任务。选择合适的算法需要根据具体的应用场景、机器人特性以及任务需求进行权衡和选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值