机械臂轨迹跟踪控制算法是机器人领域的重要研究方向,其目的在于使机械臂能够准确地跟踪预设的轨迹,以实现各种复杂的任务。以下将对机械臂轨迹跟踪控制算法进行综述。
一、自适应控制算法
-
基于参数不确定机械臂系统的自适应轨迹跟踪控制
- 杨亮、陈勇和刘治在 2019 年发表于《控制与决策》的论文中提出了一种任务空间自适应轨迹跟踪控制方法。该方法通过定义关节角速度参考误差,并将任务空间的轨迹跟踪误差及运动学参数误差反馈给控制器,以改善系统稳定性。同时,设计电机参数传输矩阵及电机参数自适应率,以抵消电机发热引起参数漂移对跟踪性能的影响,并给出了稳定性证明。实验结果表明,该方法能够较好地克服电机参数漂移对跟踪控制性能的影响。
-
Robotic Arm Trajectory Tracking Control Based on An RBF Neural Network Adaptive Control Algorithm
- Baojian Qin、Wenhao Zhang 和 Shijian Dong 在 2022 年发表的论文中对比了两种机器人操作系统轨迹跟踪控制策略,即无模型自适应算法和径向基函数(RBF)神经网络自适应算法。无模型自适应控制技术仅使用输入输出数据构建控制器,无需知道被控系统的具体模型信息。最后实验轨迹跟踪结果表明,RBF 神经网络能够以相对较小的跟踪误差更好地跟踪机械臂的轨迹。
二、迭代学习控制算法
- 基于一种加速 PD 型迭代学习控制算法的机械臂轨迹跟踪
- 李岩、丁浩和孙中波在 2019 年发表于《科学技术与工程》的论文中针对二自由度机械臂非线性系统,在扰动的情况下设计了一种 PD 型迭代学习控制律。随着系统迭代次数的不断增加,通过在区间内对增益矩阵进行实时修改来缩短所需的修正区间,进而达到加快收敛速度的目的。首先,结合λ范数分析 ILC 的收敛性。其次,通过仿真验证所提出控制策略的可行性和有效性。最后,在相同条件下,仿真结果表明,PD 型 ILC 收敛速度比 P 型 ILC 更快;带有扰动的 PD 型 ILC 比传统扰动型 PD 控制收敛效果更好。
三、模糊神经网络控制算法
- Fuzzy neural network control for mechanical arm based on adaptive friction compensation
- Hui Yang、Saiyan Wu 和 Gang Huang 在 2020 年发表于《Journal of Vibroengineering》的论文中,为解决机械臂在关节空间跟踪轨迹时受摩擦非线性、未知动态参数和外部干扰影响而难以提高控制精度的问题,引入 LuGre 摩擦模型并设计了一种基于自适应模糊神经网络的新关节空间轨迹跟踪控制器。该控制器能够自适应调整基函数的中心和宽度,可以在线逼近具有 LuGre 摩擦的非线性环节,并使用滑模控制项来减小逼近误差。将 LuGre 模型引入机械臂系统可以更真实地模拟系统的摩擦环节,这对机械臂的高精度控制具有重要意义。使用 Lyapunov 方法证明了闭环系统的稳定性。仿真结果表明,设计的自适应模糊神经网络可以有效地补偿包括摩擦在内的非线性环节,而无需精确的系统参数,并且控制器对负载变化具有很强的鲁棒性,从而实现了机械臂在关节空间的高精度轨迹跟踪。
四、基于 LabVIEW 的控制算法
- LabVIEW 环境下的机械臂轨迹跟踪控制算法研究
- 孙军、崔楠和张鹏在 2020 年发表于《机械设计与制造》的论文中,针对机械臂仿真控制领域文本语言编程复杂、效率低等问题,构建了一种基于 LabVIEW 的四轴机械臂仿真控制平台。以 Dobot 机械臂为研究对象,使用 Lagrange 分析法构建动力学方程,并在 LabVIEW 中搭建了其仿真模型。针对 PID 控制应用于非线性、强耦合、多变量的机器人系统时控制效果不理想的问题,设计了一种基于 LabVIEW 的模糊 PID 机械臂控制策略。通过 LabVIEW 仿真实验表明,该方法提高了控制精度,降低了系统的超调量和调节时间,大大缩短了开发周期。
五、基于支持向量机的预测控制算法
- Improved SVM algorithm for upper limb rehabilitation mechanical arm Study on the Prediction of Track Tracking Control
- Chu Zenan、Wang Wei 和 Wang Di 在 2020 年发表于《Journal of Physics Conference Series》的论文中,针对上肢康复训练机械臂强耦合、非线性和时变的特点,设计了一种基于 SVM(支持向量机)的轨迹跟踪预测控制器。收集机械臂系统的输入和输出数据,通过 SVM 识别得到广义逆系统,与原系统串联解耦。对于解耦后的系统,采用改进的 SVM 算法进行轨迹跟踪预测控制,并结合 PSO 优化滚动控制序列的预测函数控制方法对 SVM 算法进行改进。改进的 SVM 算法可以高精度地预测上肢康复机械臂的轨迹,实验结果表明,改进算法对系统的稳定性和鲁棒性具有良好的适应性。
六、基于 RBF - BP 算法的控制算法
- 基于 RBF - BP 算法的工业机械臂轨迹控制与跟踪
- 郭新兰和姚利娜在 2021 年发表于《机床与液压》的论文中,针对现有机械臂轨迹控制补偿算法偏差大、效率低的不足,提出了一种基于 RBF - BP 的机械臂行进轨迹控制与跟踪算法。从机械臂各轴向的空间移动、角度旋转等 6 个自由度出发建模,描述机械臂末端的位置移动和姿态变化,并计算向量的移动距离和偏转角度。面对机械臂系统误差和摩擦扰动导致的轨迹偏差问题,利用 RBF - BP 算法局部逼近最优控制轨迹,并基于高斯基函数的向量值获取最优的权值和轨迹输出值。仿真结果表明,在提出算法控制下的行进轨迹接近于理论轨迹,3 个轴向的坐标误差趋近于零。
七、零空间避障的轨迹跟踪算法
- 一种零空间避障的机械臂末端轨迹跟踪算法
- 刘雪飞、徐向荣和查文斌在 2021 年发表于《机械科学与技术》的论文中,针对传统的零空间避障方法无法根据障碍物距离提前采取避障行为同时保证末端跟踪精度的问题,提出了一种零空间避障的机械臂末端轨迹跟踪算法。该方法采用伪距离代替欧氏距离作为距离接近度指标解决零空间避障问题,同时设计一种自适应正定系数矩阵 K 和速度误差饱和函数 sat(e),将实时轨迹运行结果反馈给冗余机械臂运动学反解,根据反馈结果自适应调节关节角速度以减小末端轨迹跟踪误差。采用 iiwa14 机械臂进行仿真实验,结果表明所提出的算法能够在完成冗余机械臂零空间避障的同时保证末端轨迹跟踪误差在 1cm 以下,验证了所提算法的有效性和优越性。
八、自适应滑模控制算法
- Robust Adaptive Sliding Mode Control Using Stochastic Gradient Descent for Robot Arm Manipulator Trajectory Tracking
- Mohammed Yousri Silaa、O. Barambones 和 Aissa Bencherif 在 2024 年发表于《Electronics》的论文中,提出了一种用于机器人臂操作臂的创新控制策略,即利用随机梯度下降(ASMCSGD)的自适应滑模控制。ASMCSGD 控制器在鲁棒性、消除抖振和快速、精确的轨迹跟踪方面有显著改进。其性能与超扭曲算法(STA)和传统滑模控制(SMC)控制器进行了系统比较,所有控制器都使用灰狼优化器(GWO)进行了优化。仿真结果表明,ASMCSGD 控制器对于θ1和θ2的均方根误差分别为 0.12758 和 0.13387。相比之下,STA 控制器对于θ1和θ2的均方根误差分别为 0.1953,而 SMC 控制器对于θ1和θ2的均方根误差分别为 0.24505 和 0.29112。此外,ASMCSGD 简化了实现,消除了不必要的振荡,并实现了卓越的跟踪性能。这些发现强调了 ASMCSGD 在增强机器人臂操作臂的轨迹跟踪和减少抖振方面的有效性,使其成为实际应用中鲁棒控制的有前途的方法。
九、三步法控制算法
- 基于三步法的机械臂轨迹跟踪控制
- 于树友、孟凌宇和许芳在 2020 年发表于《控制理论与应用》的论文中,考虑机械臂末端轨迹跟踪控制问题,以跟踪逆运动学求解出的末端期望轨迹对应的各关节期望角度为控制目标,设计了一种基于三步法的控制器。该控制器由类稳态控制、可变参考前馈控制和误差反馈控制三部分组成。证明了该控制器可以通过控制机械臂的各关节力矩实现各关节实际角度对期望角度的状态跟踪,进而使得末端轨迹渐近跟踪期望轨迹,并且跟踪误差是输入到状态稳定的。仿真表明基于三步法控制器的空间机械臂末端可以渐近跟踪期望轨迹,并且该算法可以克服系统的末端负载质量变化等不确定性的影响。
不同机械臂轨迹跟踪控制算法的优缺点分别是什么?
机械臂轨迹跟踪控制是机械臂控制中的关键问题,不同的控制算法具有各自的优缺点。以下是对几种常见机械臂轨迹跟踪控制算法优缺点的分析:
一、基于分段 PD 控制的算法
- 优点:
- 抑制基座振动和载荷不确定性:该控制器能很好地抑制基座的振动以及载荷不确定性带来的影响。控制力输入总是满足给定的约束条件,控制律表现为增益可变的比例微分控制,在动态过程中,控制器增益根据系统当时状态偏差以阶跃方式按设定规律作相应改变,当系统接近或达到终端状态时,控制器的增益趋于动态平衡状态。
- 加快收敛速度:在扰动的情况下,设计了一种 PD 型迭代学习控制律,随着系统迭代次数的不断增加,通过在区间内对增益矩阵进行实时修改来缩短所需的修正区间,进而达到加快收敛速度的目的。PD 型 ILC 收敛速度比 P 型 ILC 更快;带有扰动的 PD 型 ILC 比传统扰动型 PD 控制收敛效果更好。
- 缺点:未明确提及该算法的明显缺点。
二、基于滑模的控制算法
- 优点:
- 有效性强:针对混联结构的强非线性和强耦合性,使用滑模控制器对机械臂进行轨迹跟踪控制,验证了所提滑模控制器的有效性。
- 抵抗干扰:设计的自适应非奇异鲁棒积分滑模控制器和改进的自适应非奇异终端滑模控制器,能够抵抗参数不确定性、未知干扰和摩擦等问题,实现机械臂系统的位置跟踪和速度跟踪,控制器中的鲁棒项能够很好地抵抗各种类型的干扰,使输出误差接近 0。通过优化滑模控制器中的符号函数,可以有效减弱滑模控制的抖动问题。
- 缺点:滑模控制可能存在抖振问题,尽管可以通过优化符号函数来减弱,但仍可能在一定程度上影响控制效果。
三、基于多项式插值算法和神经网络的控制算法
- 优点:
- 解决面部治疗问题:通过构建机械臂模型分析其运动学,使用多项式插值算法规划机械臂的运动轨迹,并在 Matlab 和物理机械臂上同时验证算法的可行性。添加相机模块和训练神经网络模型检测人脸位置,设计人脸跟踪模块使医疗辅助机械臂能够实时跟踪人脸,解决了医疗患者在面部治疗时不能长时间保持平稳状态而导致的治疗问题。
- 缺点:算法相对复杂,需要进行模型构建、神经网络训练等多个步骤,计算量较大。
四、基于模糊 PID 的控制算法
- 优点:
- 提高控制精度:针对 PID 控制应用于非线性、强耦合、多变量的机器人系统时控制效果不理想的问题,设计了一种基于 LabVIEW 的模糊 PID 机械臂控制策略。通过 LabVIEW 仿真实验表明,该方法提高了控制精度,降低了系统的超调量和调节时间,大大缩短了开发周期。
- 缺点:模糊 PID 控制需要确定模糊规则和隶属度函数等参数,参数的选择可能会影响控制效果,且参数的调整需要一定的经验和时间。
五、基于在线自适应动态规划(OADP)结合扰动观测器的算法
- 优点:
- 鲁棒性强:提出一种在线自适应动态规划(OADP)结合扰动观测器的算法,该方案只有一个神经网络,比使用两个或三个神经网络的其他方法更有效、更简单。通过李雅普诺夫理论从数学上证明了包括 Actor、Critic 和扰动观测器组件的整个系统的稳定性。仿真结果表明,基于观测器的 OADP 技术即使在系统不确定性和外部干扰的情况下,也能对平面机器人给出良好的响应。
- 缺点:只针对平面机器人进行了仿真和比较,对于其他类型的机械臂的适用性可能需要进一步验证。
六、基于 RBF - BP 算法的控制算法
- 优点:
- 控制轨迹偏差:面对机械臂系统误差和摩擦扰动导致的轨迹偏差问题,利用 RBF - BP 算法局部逼近最优控制轨迹,并基于高斯基函数的向量值获取最优的权值和轨迹输出值。仿真结果表明,在提出算法控制下的行进轨迹接近于理论轨迹,3 个轴向的坐标误差趋近于零。
- 缺点:RBF - BP 算法的计算复杂度可能较高,训练时间可能较长。
七、基于改进的近端策略优化(Improved - PPO)的算法
- 优点:
- 提高跟踪效率:提出一种基于改进的近端策略优化(Improved - PPO)的机械臂轨迹跟踪方法,将近端策略优化(PPO)和模型预测控制(MPC)集成,为机械臂应用提供了一种有效的算法。MPC 用于轨迹预测设计控制器,Improved - PPO 算法用于轨迹跟踪。仿真结果表明,Improved - PPO 算法的收敛速度比异步优势演员 - 评论家(A3C)和 PPO 算法分别提高了 84.3%和 15.4%。
- 缺点:该算法相对较新,可能需要进一步的实际应用验证其稳定性和可靠性。
如何进一步提高机械臂轨迹跟踪控制算法的精度和稳定性?
机械臂轨迹跟踪控制算法的精度和稳定性对于机械臂在工业生产、医疗卫生、科学研究等领域的应用至关重要。以下将从多个方面探讨如何进一步提高机械臂轨迹跟踪控制算法的精度和稳定性。
一、采用先进的控制策略
- 模糊 PID 控制:在 LabVIEW 环境下,针对 PID 控制应用于非线性、强耦合、多变量的机器人系统时控制效果不理想的问题,设计一种基于 LabVIEW 的模糊 PID 机械臂控制策略。这种控制策略通过模糊逻辑对 PID 参数进行实时调整,能够提高控制精度,降低系统的超调量和调节时间。
- 自适应神经网路控制:提出一种自适应神经网络控制方法来解决机械臂受到外部环境干扰时运动不稳定和轨迹跟踪误差大的问题。该方法利用正反馈神经网络研究机械臂的动力学特性,设计自适应神经网络控制系统,并通过李雅普诺夫函数证明闭环系统的稳定性和收敛性。实验结果表明,该方法能够提高机械臂轨迹的控制精度,减少机械臂运动的抖动。
- 鲁棒控制:提出一种基于动力学模型和跟踪误差的新型实用鲁棒控制方法,用于具有不确定性的机械臂。该方法包括基于模型和误差的比例微分反馈项以及基于误差的鲁棒项。通过拉格朗日方法对系统动力学进行建模,假设不确定性是时变但有限的。基于李雅普诺夫方法,证明了所提出的控制器具有一致有界性(UB)和一致最终有界性(UUB),并且通过选择适当的设计参数可以使最终有界超球面的半径任意小。
二、优化算法
- 基于 RBF - BP 算法:针对现有机械臂轨迹控制补偿算法偏差大、效率低的不足,提出一种基于 RBF - BP 的机械臂行进轨迹控制与跟踪算法。该算法利用 RBF - BP 算法局部逼近最优控制轨迹,并基于高斯基函数的向量值获取最优的权值和轨迹输出值,以解决机械臂系统误差和摩擦扰动导致的轨迹偏差问题。仿真结果表明,在该算法控制下的行进轨迹接近于理论轨迹,三个轴向的坐标误差趋近于零。
- 基于改进近端策略优化:为了提高机械臂的跟踪效率,提出一种基于改进近端策略优化(Improved - PPO)的机械臂轨迹跟踪方法。该方法将近端策略优化(PPO)和模型预测控制(MPC)相结合,MPC 用于轨迹预测设计控制器,Improved - PPO 算法用于轨迹跟踪。与异步优势演员评论家(A3C)和 PPO 算法相比,Improved - PPO 算法的收敛速度分别提高了 84.3%和 15.4%。
- 在线自适应动态规划结合干扰观测器:提出一种结合干扰观测器的在线自适应动态规划(OADP)方法来解决非线性系统的鲁棒优化问题。该方案仅使用一个神经网络,比使用两个或三个神经网络的其他方法更有效和简单。通过李雅普诺夫理论证明了包括演员、评论家、干扰观测器组件的整个系统的稳定性。仿真结果表明,基于观测器的 OADP 技术能够在系统不确定性和外部干扰的情况下为平面机器人提供良好的响应。
三、解决特定问题
- 处理参数不确定问题:针对机械臂系统惯性参数及运动学参数不能准确测量进而影响轨迹跟踪性能的问题,提出一种任务空间自适应轨迹跟踪控制方法。通过定义关节角速度参考误差,并将任务空间的轨迹跟踪误差及运动学参数误差反馈给控制器,以改善系统稳定性。设计电机参数传输矩阵及电机参数自适应率,以抵消电机发热引起参数漂移对跟踪性能的影响。
- 零空间避障与末端轨迹跟踪:为了解决传统的零空间避障方法无法根据障碍物距离提前采取避障行为同时保证末端跟踪精度的问题,提出一种零空间避障的机械臂末端轨迹跟踪算法。该方法采用伪距离代替欧氏距离作为距离接近度指标解决零空间避障问题,同时设计一种自适应正定系数矩阵 K 和速度误差饱和函数 sat(e),将实时轨迹运行结果反馈给冗余机械臂运动学反解,根据反馈结果自适应调节关节角速度以减小末端轨迹跟踪误差。
- 滑模控制优化:提出一种无抖振快速终端滑模控制(FTSMC)策略,用于三自由度机械臂,以提高跟踪精度和鲁棒性,同时确保有限时间收敛。该控制框架采用牛顿 - 欧拉动力学开发,随后采用状态空间表示法捕获系统的角位置和速度。通过引入改进的滑模面和基于李雅普诺夫的稳定性分析,所提出的 FTSMC 有效地减轻了抖振,同时保留了滑模控制的优点,如快速响应和强抗干扰性。
- 自适应非奇异滑模控制:设计自适应非奇异鲁棒积分滑模控制器和改进的自适应非奇异终端滑模控制器,用于机械臂系统的轨迹跟踪控制。这两个控制器各有不同的优势,但都能够实现机械臂系统的位置跟踪和速度跟踪。控制器中的鲁棒项能够很好地抵抗各种类型的干扰,使输出误差接近 0。通过优化滑模控制器中的符号函数,可以有效减弱滑模控制的抖振问题。
综上所述,提高机械臂轨迹跟踪控制算法的精度和稳定性可以从采用先进的控制策略、优化算法以及解决特定问题等多个方面入手。这些方法各有优缺点,可以根据具体的应用场景和需求进行选择和组合,以实现更好的机械臂轨迹跟踪控制效果。
未来机械臂轨迹跟踪控制算法的发展趋势是什么?
机械臂轨迹跟踪控制算法在工业自动化、医疗卫生、科学研究等领域有着广泛的应用。随着科技的不断进步,未来机械臂轨迹跟踪控制算法的发展将呈现出以下几个主要趋势。
一、智能化控制
智能化控制是未来机械臂轨迹跟踪控制算法的重要发展方向。目前,模糊控制、神经网络控制等智能控制方法已经在机械臂控制中得到了一定的应用。未来,随着人工智能技术的不断发展,更加先进的智能控制方法将会被应用到机械臂轨迹跟踪控制中。例如,深度学习算法可以通过对大量数据的学习,自动提取机械臂轨迹跟踪的特征,从而实现更加精准的控制。此外,强化学习算法可以通过与环境的交互,不断优化机械臂的控制策略,提高控制性能。
二、多传感器融合
多传感器融合技术可以将不同类型的传感器信息进行融合,从而提高机械臂对环境的感知能力。未来,多传感器融合技术将会在机械臂轨迹跟踪控制中得到更加广泛的应用。例如,视觉传感器可以获取机械臂周围环境的图像信息,力传感器可以获取机械臂与环境之间的力信息,通过将这些信息进行融合,可以实现更加精准的轨迹跟踪控制。此外,多传感器融合技术还可以提高机械臂的鲁棒性和可靠性,使其能够在复杂的环境中稳定运行。
三、自适应控制
机械臂在运行过程中,往往会受到各种不确定性因素的影响,如负载变化、外部干扰等。自适应控制技术可以根据机械臂的实际运行情况,自动调整控制参数,从而提高控制性能。未来,自适应控制技术将会在机械臂轨迹跟踪控制中得到更加广泛的应用。例如,自适应模糊控制可以根据机械臂的实际运行情况,自动调整模糊规则和隶属度函数,从而实现更加精准的控制。此外,自适应神经网络控制可以通过对机械臂运行数据的学习,自动调整神经网络的权重和阈值,提高控制性能。
四、协同控制
在一些复杂的任务中,需要多个机械臂协同工作才能完成。未来,协同控制技术将会在机械臂轨迹跟踪控制中得到更加广泛的应用。例如,多个机械臂可以通过协同控制,实现对大型物体的搬运、装配等任务。此外,协同控制技术还可以提高机械臂的工作效率和可靠性,使其能够更好地适应复杂的生产环境。
五、高性能计算
随着机械臂的应用场景越来越复杂,对轨迹跟踪控制算法的计算性能要求也越来越高。未来,高性能计算技术将会在机械臂轨迹跟踪控制中得到更加广泛的应用。例如,并行计算技术可以将机械臂轨迹跟踪控制算法的计算任务分配到多个处理器上并行执行,从而提高计算效率。此外,图形处理器(GPU)加速技术可以利用 GPU 的强大计算能力,加速机械臂轨迹跟踪控制算法的计算过程,提高控制性能。
综上所述,未来机械臂轨迹跟踪控制算法的发展将呈现出智能化控制、多传感器融合、自适应控制、协同控制和高性能计算等趋势。这些趋势将为机械臂在各个领域的应用提供更加精准、高效、可靠的控制技术支持。