一种SLAM精度评定工具——EVO使用方法详解

EVO是一款用于SLAM系统精度评估的工具,支持计算绝对位姿误差(evo_ape)和相对位姿误差(evo_rpe)。通过命令行参数配置,可以进行对齐、画图、结果保存等操作。evo_config用于全局设置和配置文件管理,evo_traj用于轨迹管理和比较,evo_res则用于比较不同结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

evo工具github链接:link

evo_ape 计算绝对位姿误差

绝对位姿误差,常被用作绝对轨迹误差,比较估计轨迹和参考轨迹并计算整个轨迹的统计数据,适用于测试轨迹的全局一致性。
命令语法:命令 格式 参考轨迹 估计轨迹 [可选项]
其中格式包括euroc、tum等数据格式,可选项有对齐命令、画图、保存结果等。
常用命令示例:
evo_ape euroc MH_data3.csv pose_graphloop.txt -r full -va --plot --plot_mode xyz --save_plot ./VINSplot --save_results ./VINS.zip
命令的含义为:计算考虑平移和旋转部分误差的ape,进行平移和旋转对齐,以详细模式显示,保存画图并保存计算结果。
命令运行后得到结果如下图所示
在这里插入图片描述
其中-r表示ape所基于的姿态关系

-r/–pose_relation可选参数 含义
full 表示同时考虑旋转和平移误差得到的ape,无单位(unit-less)
trans_part 考虑平移部分得到的ape,单位为m
rot_part 考虑旋转部分得到的ape,无单位(unit-less)
angle_deg 考虑旋转角得到的ape,单位°(deg)
angle_rad 考虑旋转角得到的ape,单位弧度(rad)

不添加-r/–pose_relation和可选项,则默认为trans_part。

-v表示verbose mode,详细模式,-a表示采用SE(3) Umeyama对齐,其余可选项如下表所示。不加-s表示默认尺度对齐参数为1.0,即不进行尺度对齐。

命令 含义
–align/-a 采用SE(3) Umeyama对齐,只处理平移和旋转
–align --correct_scale/-as 采用Sim(3) Umeyama对齐,同时处理平移旋转和尺度
–correct_scale/-s 仅对齐尺度

采用不同对齐命令效果图
在这里插入图片描述<

### SLAM EVO评估工具的功能介绍 EVO是一款专门针对SLAM(同步定位与地图构建)系统的轨迹精度评估工具,适用于多种场景下的研究和开发工作[^1]。此工具能够提供详尽的统计分析报告,包括但不限于均值、标准差等统计数据,并能绘制出直观易懂的结果图表,极大地方便了研究人员对不同算法性能对比的需求。 #### 支持的数据集格式 为了便于用户操作,EVO兼容多个知名公开数据集的标准文件结构,具体来说涵盖了“TUM”、“KITTI”、“EuRoC MAV”,还有"ROS bagfile"[^1]。这意味着当使用者所拥有的实验资料遵循上述任一类型的规范时,则无需再做任何转换即可无缝接入到后续评测流程当中去。 ### 安装指南 对于希望快速上手的朋友而言,可以通过Python包管理器pip来完成软件环境部署: ```bash pip3 install evo --upgrade --no-binary evo ``` 而那些倾向于深入理解内部机制或是想要参与项目贡献的人士则可以选择通过Git获取最新版源代码并手动编译安装: ```bash git clone https://github.com/MichaelGrupp/evo.git cd evo pip3 install --editable . --upgrade --no-binary evo ``` ### 基本命令行选项解析 在掌握了基本配置之后,了解一些常用的CLI参数将会使实际应用变得更加得心应手。比如,在执行`evo_rpe tum -h`指令后可以获得有关于如何利用该程序计算相对位姿误差(Relative Pose Error,RPE)的帮助文档;同样地,如果要调用绝对姿态估计(Absolute Pose Estimation,APE),也可以参照类似的语法结构[^2]。 特别值得注意的是几个重要的标志位:`--ref`用于指定参考路径作为比较基准;`-a`意味着启用全局刚体变换以实现最佳匹配效果;至于`-s`则是为了让测试对象能够在保持形状特征不变的前提下调整大小比例从而更好地贴合目标模型[^4]。 ### 实际案例演示 假设现在有一个基于ORB-SLAM2框架下产生的.tum格式输出文件需要被检验其准确性,那么完整的处理过程大致如下所示: ```bash evo_ape tum ground_truth_file.txt estimated_trajectory_file.txt \ --ref=ground_truth_file.txt \ -a \ -p plot.png \ -r full ``` 以上命令会读取两个输入文件(真实轨迹vs预测轨迹),经过必要的预处理步骤后再依据设定好的规则来进行量化评价最后保存成图片形式供进一步查看。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值