贝叶斯优化

首先是无关紧要的杂文

系统通过已有数据寻找答案,设置数据也需要自己找。
但是哪些数据能生成有用需要指标,称为自适应传感。
在放射源检测中,可以检测每个点的置信区间。
n个观测可以反馈每个的置信区间(LCB置信下限;UCB置信上限),如果B的置信下限高于A的zhi置信上限说明B>A。
实际中,如果一个点的置信上限低于周围点的置信下限,在下次检测的时候可以粗略检测。
每一次都找这样的区域。

下面是是真正的贝叶斯优化:
文章内容莱源于《贝叶斯优化: 一种更好的超参数调优方式》

它要求已经存在几个样本点,通过高斯过程回归,计算前面n个点的后验概率分布。
在这里插入图片描述

探索和开发(方差和均值)

从曲线可以看出,中间的点均值较大,而且方差也比较大,很有可能这个点的超参数可以训练得到一个效果指标好的模型。那为什么要选均值大和方差大的点呢?因为前面提到均值代表期望的最终结果,当然是越大越好,但我们不能每次都挑选均值最大的,因为有的点方差很大也有可能存在全局最优解,因此选择均值大的点我们成为exploritation(开发),选择方差大的点我们称为exploration(探索)。

获取函数

例如我们的模型训练非常慢,只能再跑1组超参数了,那应该选择均值较大的比较有把握,如果我们计算力还能可以跑1000次,那么就不能放弃探索的机会应该选择方差大的,而至于均值和方差比例如何把握,这就是我们要定义的acquisition function了。

也就是说,在用高斯过程回归,回归出采样点的分布以后,根据每个点的均值和方差的关系,选择下一个需要更新的点,也就是说需要加入到训练集中的点(和高斯过程回归的区别是这个是真正的实验,因为得到的不是分布了,而是真正的y。)

函数形式

最简单的acquisition function就是均值加上n倍方差(Upper condence bound算法),这个n可以是整数、小数或者是正数、负数,更复杂的acquisition function还有Expected improvement、Entropy search等等。在原来的图上加上acquisition function曲线,然后我们求得acquisition function的最大值,这是的参数值就是贝叶斯优化算法推荐的超参数值,是根据超参数间的联合概率分布求出来、并且均衡了开发和探索后得到的结果。
在这里插入图片描述

在阅读的论文中,使用的是下界置信区间函数
TCB(x) = u(x)-k*σ(x)
取函数最小的x进行优化。

超超参数

注意,前面提到的Bayesian Optimization等超参数优化算法也是有超参数的,或者称为超超参数,如acquisition function的选择就是可能影响超参数调优模型的效果,但一般而言这些算法的超超参数极少甚至无须调参,大家选择业界公认效果比较好的方案即可。

调参服务

文中介绍了谷歌的调参服务,这里不进行介绍。

其他相关文章

AutoML总结

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值