一,凸包--1,凸相关

这节课举了两个例子,第一个例子是形象地说明了什么是凸包,第二个是说明了点之间怎样的关系才能形成凸包(是否凸相关)
一,在黑板上的钉子(红点),用橡皮筋(蓝线段)撑住,橡皮筋就可以认为是凸包,与橡皮筋挂着的钉子对凸包起作用,内部的不起作用。
在这里插入图片描述
,当然如果内部的钉子发生变化,则对凸包起作用的钉子也会可能发生变化,即,原来起作用的不再起作用,原来不起作用的,可能会起作用。
在这里插入图片描述

第二个例子讲的是颜料,rgb三种颜色按照比例不同,可以勾兑成其他不同的颜色
在这里插入图片描述

一开始看的迷茫了,琢磨了下,其实就是是否具有线性关系,当然,线性关系是有限制条件的,
比如一维向量:
ax+by =z;如果a+b=1且a和b都非负,就说明它们有线性关系,
举例说明:
x=0.5,y=0.1,z=0.18,那么能不能用x和y表示z呢?
(0.5 0.2+0.10.8) = 0.18,那么用0.5和0.1就可以通过1:4的关系勾兑出5份0.18来。
份数是和距离成反比的,disXZ = 0.5-018=0.32, disyz=0.18-0.1=0.08,disXZ/disyz = 4,距离是4:1,所以,份数a:b=1:4,根据a+b=1,则a=0.2,b=0.8,这就是凸相关了。
那么,
如果x=0.5,y=0.1,z=0.6,那么能不能勾兑出来呢?这是不行的,因为即使所有的都是0.5,都不够。

同样,对于二维向量,若满足
a(x1,y1)+b(x1,y2) =(z1,z2) ,
且a+b=1,且a,b均非负,
则(z1,z2)这个点在(x1,y1)和(x2,y2)这条线段上。

如果不满足,则再引入一个点(x3,y3),
如果能满足a(x1,y1)+b(x1,y2) +c(x3,y3)=(z1,z2),且a+b+c=1,a,b,c均非负,则(z1,z2)这个点落在(x1,y1),(x2,y2),(x3,y3)组成的三角形内。

以上两种,无论在线段上,还是三角形内,都是可以用线性组合,且系数非负,这就是凸相关。

当然,上面是推导,从下图一目了然
在这里插入图片描述
点2在点1和点3组成的线段内部,是凸相关。另一方面,点3就不在点1和点2组成的线段内,不是凸相关。

再看二维平面
在这里插入图片描述
u在xy线段内,是和xy凸相关;
v是在xyz组成的内部,是和xyz凸相关,

那么如果凸无关呢?即在三角形外部呢?
很明显,从下图看到,那就可以和其他三个点共同组成凸包了。

在这里插入图片描述

点4不在1,2,3所组成的三角面内,1,2,3,4共同形成凸包。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值