一,凸包--1,凸相关

这节课举了两个例子,第一个例子是形象地说明了什么是凸包,第二个是说明了点之间怎样的关系才能形成凸包(是否凸相关)
一,在黑板上的钉子(红点),用橡皮筋(蓝线段)撑住,橡皮筋就可以认为是凸包,与橡皮筋挂着的钉子对凸包起作用,内部的不起作用。
在这里插入图片描述
,当然如果内部的钉子发生变化,则对凸包起作用的钉子也会可能发生变化,即,原来起作用的不再起作用,原来不起作用的,可能会起作用。
在这里插入图片描述

第二个例子讲的是颜料,rgb三种颜色按照比例不同,可以勾兑成其他不同的颜色
在这里插入图片描述

一开始看的迷茫了,琢磨了下,其实就是是否具有线性关系,当然,线性关系是有限制条件的,
比如一维向量:
ax+by =z;如果a+b=1且a和b都非负,就说明它们有线性关系,
举例说明:
x=0.5,y=0.1,z=0.18,那么能不能用x和y表示z呢?
(0.5 0.2+0.10.8) = 0.18,那么用0.5和0.1就可以通过1:4的关系勾兑出5份0.18来。
份数是和距离成反比的,disXZ = 0.5-018=0.32, disyz=0.18-0.1=0.08,disXZ/disyz = 4,距离是4:1,所以,份数a:b=1:4,根据a+b=1,则a=0.2,b=0.8,这就是凸相关了。
那么,
如果x=0.5,y=0.1,z=0.6,那么能不能勾兑出来呢?这是不行的,因为即使所有的都是0.5,都不够。

同样,对于二维向量,若满足
a(x1,y1)+b(x1,y2) =(z1,z2) ,
且a+b=1,且a,b均非负,
则(z1,z2)这个点在(x1,y1)和(x2,y2)这条线段上。

如果不满足,则再引入一个点(x3,y3),
如果能满足a(x1,y1)+b(x1,y2) +c(x3,y3)=(z1,z2),且a+b+c=1,a,b,c均非负,则(z1,z2)这个点落在(x1,y1),(x2,y2),(x3,y3)组成的三角形内。

以上两种,无论在线段上,还是三角形内,都是可以用线性组合,且系数非负,这就是凸相关。

当然,上面是推导,从下图一目了然
在这里插入图片描述
点2在点1和点3组成的线段内部,是凸相关。另一方面,点3就不在点1和点2组成的线段内,不是凸相关。

再看二维平面
在这里插入图片描述
u在xy线段内,是和xy凸相关;
v是在xyz组成的内部,是和xyz凸相关,

那么如果凸无关呢?即在三角形外部呢?
很明显,从下图看到,那就可以和其他三个点共同组成凸包了。

在这里插入图片描述

点4不在1,2,3所组成的三角面内,1,2,3,4共同形成凸包。

好的,以下是Graham-Scan算法的C++实现。 ```cpp #include <bits/stdc++.h> using namespace std; struct Point { int x, y; }; // 叉积 int cross(const Point &a, const Point &b, const Point &c) { return (b.x - a.x) * (c.y - b.y) - (b.y - a.y) * (c.x - b.x); } // 求凸包,返回点集 vector<Point> convexHull(vector<Point> &points) { int n = points.size(); // 先按照x坐标从小到大排序,x坐标相同按y坐标从小到大排序 sort(points.begin(), points.end(), [](const Point &a, const Point &b) { return a.x == b.x ? a.y < b.y : a.x < b.x; }); // 求下壳 vector<Point> lower; for (int i = 0; i < n; ++i) { while (lower.size() >= 2 && cross(lower[lower.size() - 2], lower.back(), points[i]) <= 0) lower.pop_back(); lower.push_back(points[i]); } // 求上壳 vector<Point> upper; for (int i = n - 1; i >= 0; --i) { while (upper.size() >= 2 && cross(upper[upper.size() - 2], upper.back(), points[i]) <= 0) upper.pop_back(); upper.push_back(points[i]); } // 合并下壳和上壳 vector<Point> ans(lower); ans.insert(ans.end(), upper.begin() + 1, upper.end() - 1); return ans; } int main() { int n; cin >> n; vector<Point> points(n); for (int i = 0; i < n; ++i) cin >> points[i].x >> points[i].y; vector<Point> hull = convexHull(points); cout << "Convex Hull:" << endl; for (const Point &p : hull) cout << p.x << " " << p.y << endl; return 0; } ``` 在上述代码中: - `Point` 结构体表示个点,包含 `x` 和 `y` 坐标; - `cross` 函数用于计算向量 $\overrightarrow{AB}$ 和 $\overrightarrow{AC}$ 的叉积,即 $(\overrightarrow{AB} \times \overrightarrow{AC})$,结果为正表示 $\overrightarrow{AB}$ 在 $\overrightarrow{AC}$ 的逆时针方向,结果为负表示 $\overrightarrow{AB}$ 在 $\overrightarrow{AC}$ 的顺时针方向,结果为 $0$ 表示 $\overrightarrow{AB}$ 与 $\overrightarrow{AC}$ 共线; - `convexHull` 函数用于求解凸包,输入为点集 `points`,输出为凸包点集; - 在函数内部,先按照 x 坐标从小到大排序,x 坐标相同按 y 坐标从小到大排序; - 接着求下壳,利用单调栈维护; - 再求上壳,同样利用单调栈维护; - 最后将下壳和上壳合并,得到最终的凸包点集。 希望能对你有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值