负反馈的稳定性是一个很陈旧的内容。但实际上真正理清楚并不简单。最突出的一点是,模电教材上喜欢讲:负反馈系统传递函数,如果环路增益
满足相位为180°,幅度为1,那么分母就是0,传函变成无穷大,电路开始自激振荡。
如此说来,只要相位不是180°,或者180°时模值不是1,电路就是数学成立的。那么还要求45°或者60°的PhaseMargin干什么呢?可惜的是多数书本对这一点含糊其辞,或者根本没有提。特别是国内的教材很多都是抄袭,更不会对这些问题讲的很细了。
1、是什么东西?
很多时候我们直接对电路做变换,得到一个系统函数。什么是系统函数?
系统函数是系统对冲激信号的响应。而基于线性和时不变特性,任何信号可以通过其自身和冲激卷积得到自己,频域上就是自身的变换和系统函数相乘。这样就得到了该系统对任意输入的输出。
电路分析里面有一块叫动态性能。这和基础教材上的交流分析是两个概念。无论直流还是交流分析,考虑的都是单一频率上的事情。动态特性是考虑整个函数的全频段响应。一种典型的测试方式是加一个阶跃信号,看输出的振荡情况。(好像国内本科教的模电很少有把动态性能单独讲的)
2、稳定性的本质:
谈论稳定性,本质是BIBO:有限的输入得到有限的输出。如果不稳定,那么系统输出就会无限增长,直到达到器件的物理限制。对于放大器,就是输出信号产生自激。自激时幅度达到电源轨,而频率由电路决定,不受信号控制。
负反馈放大为什么会自激?原因在于的分母上出现了右半平面的极点。说明系统的自然响应包含随时间增长的成分。也就是说,特征方程
的根落在了右半平面。
3、由此得到判断稳定性最直接的办法:
根轨迹
根轨迹是特征方程里面某一参数变化时根在复平面上的变动情况。对于上述经典负反馈电路的特征方程,可以找到两个比较常用的设计参数(也可以称自由度):和
。
很容易理解,就是反馈系数,表示有多少输出被送回输入去比较了。
表示放大器的直流增益。