Opencv图像单应性变换

主要用于将图像中分割的可行驶区域投影到BEV俯视视角

基本概念

单应性

单应性,也被称为平面单应性,是两个平面之间发生的转换。换句话说,它是图像的两个平面投影之间的映射。它由同构坐标空间中的3x3转换矩阵表示。

在数学上,同质矩阵表示为:

在坐标平面上: 

 如图所示,图像中的元素在同一个坐标平面投影到另一幅图像,保留了相同的信息,但具有变换的透视图。

OpenCv中的相关API

教程地址:

单应性变换(Homography)的学习与理解 - 程序员大本营

OpenCV中的图像行列坐标系: 

在OpenCV中imgproc模块提供了warpPerspective()与warpAffine()两个函数

warpPerspective 透视变换函数

dst = cv2.warpPerspective(src, M, dsize, dst, flags, borderMode, borderValue)

 其中M即为3x3变换矩阵

warpAffine 仿射变换函数

dst = cv2.warpAffine(src, M, dsize, dst, flags, borderMode, borderValue)

其中 M 即为 2x3 变换矩阵(由于仿射变换 3x3 矩阵最下面一行为 0 0 1,所以也就简写为 2x3 了)

从原理上来说,仿射变换是透视变换的特例,所以可以用warpPerspective来计算仿射变换。但是实际中涉及到计算速度等问题,最好还是使用对应的API吧。

开源项目Cam2BEV

源码地址

GitHub - ika-rwth-aachen/Cam2BEV: TensorFlow Implementation for Computing a Semantically Segmented Bird's Eye View (BEV) Image Given the Images of Multiple Vehicle-Mounted Cameras.

单应性变换应用于车载摄像头的语义分割图像,将其转换为BEV;

IPM直接用homography转换误差很大(路面平坦的假设),而cam2BEV方法在无视觉失真的情况下学习如何计算准确的BEV图像。

参考链接:

安全验证 - 知乎

自动驾驶感知中BEV的景物表示方法(下) - 简书

单应性变换(Homography)的学习与理解 - 程序员大本营

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值