主要用于将图像中分割的可行驶区域投影到BEV俯视视角
基本概念
单应性
单应性,也被称为平面单应性,是两个平面之间发生的转换。换句话说,它是图像的两个平面投影之间的映射。它由同构坐标空间中的3x3转换矩阵表示。
在数学上,同质矩阵表示为:
在坐标平面上:
如图所示,图像中的元素在同一个坐标平面投影到另一幅图像,保留了相同的信息,但具有变换的透视图。
OpenCv中的相关API
教程地址:
单应性变换(Homography)的学习与理解 - 程序员大本营
OpenCV中的图像行列坐标系:
在OpenCV中imgproc模块提供了warpPerspective()与warpAffine()两个函数
warpPerspective 透视变换函数
dst = cv2.warpPerspective(src, M, dsize, dst, flags, borderMode, borderValue)
其中M即为3x3变换矩阵
warpAffine 仿射变换函数
dst = cv2.warpAffine(src, M, dsize, dst, flags, borderMode, borderValue)
其中 M 即为 2x3 变换矩阵(由于仿射变换 3x3 矩阵最下面一行为 0 0 1,所以也就简写为 2x3 了)
从原理上来说,仿射变换是透视变换的特例,所以可以用warpPerspective来计算仿射变换。但是实际中涉及到计算速度等问题,最好还是使用对应的API吧。
开源项目Cam2BEV
源码地址
单应性变换应用于车载摄像头的语义分割图像,将其转换为BEV;
IPM直接用homography转换误差很大(路面平坦的假设),而cam2BEV方法在无视觉失真的情况下学习如何计算准确的BEV图像。