1. 中值定理
f(x) 在 [a,b] 上连续,-> 存在 a < c < b, f(a) < y < f(b), 使得 f(c) = y
2. 均值定理
f(x) 在 [a,b] 上连续可微, -> 存在 a < c < b,使得f'(c) = [f(b)-f(a)]/(b-a)
3. 罗尔定理
f(x) 在 [a,b] 上连续可微, f(a) = f(b) -> 存在 a < c < b,使得f'(c) = 0
4. f(x)连续 -> 极限存在
5. 泰勒展开式
f(x) = f(x0) + f'(x0)(x-x0) + f''(x0)/2! * (x-x0)^2 + ... + f(x0)/k! * (x-x0)^k + f(c) * (x-x0)^(k+1)
6. 积分均值定理
f(x) 在 [a,b] 上连续, 令 g(x) 在[a,b] 上可积,且符号不变 ->