阿里云百炼平台支持哪些大模型?通义千问、DeepSeek等269种模型

阿里云百炼支持哪些大模型?如下,阿里云百科aliyunbaike.com整理目前支持通义千问、DeepSeek、通义万相、Llama、通义万相、StableDiffusion等269种大模型,详细参考阿里云百炼平台:

阿里云百炼支持大模型通义千问、DeepSeek等

阿里云百炼支持大模型通义千问、DeepSeek等

目前阿里云百炼平台开通即可领取100万免费Token额度,还能领券 aliyun.club 免费领阿里云上云补贴。

  • 通义千问-Omni-Turbo-2025-01-19(qwen-omni-turbo-2025-01-19)
  • 通义千问-Omni-Turbo(qwen-omni-turbo)
  • 通义千问-Omni-Turbo-Latest(qwen-omni-turbo-latest)
  • 通义千问-Max-Latest(qwen-max-latest)
  • 通义千问-Max-2025-01-25(qwen-max-2025-01-25)
  • 通义千问-Max(qwen-max)
  • 通义千问2.5-VL-72B(qwen2.5-vl-72b-instruct)
  • 通义千问2.5-VL-7B(qwen2.5-vl-7b-instruct)
  • 通义千问2.5-VL-3B(qwen2.5-vl-3b-instruct)
  • 通义千问2.5-7B-1M(qwen2.5-7b-instruct-1m)
  • 通义千问2.5-14B-1M(qwen2.5-14b-instruct-1m)
  • 通义千问-QvQ-72B-Preview(qvq-72b-preview)
  • 通义千问-QwQ-32B-Preview(qwq-32b-preview)
  • 通义千问VL-Plus(qwen-vl-plus)
  • 通义千问VL-Plus-Latest(qwen-vl-plus-latest)
  • 通义千问VL-Plus-2025-01-25(qwen-vl-plus-2025-01-25)
  • 通义千问-Audio-Turbo(qwen-audio-turbo)
  • 通义千问-Audio-Turbo-Latest(qwen-audio-turbo-latest)
  • 通义千问-Audio-Turbo-2024-12-04(qwen-audio-turbo-1204)
  • 通义千问-Plus(qwen-plus)
  • 通义千问-Plus-Latest(qwen-plus-latest)
  • DeepSeek-R1(deepseek-r1)
  • DeepSeek-V3(deepseek-v3)
  • Llama3.3-70B-Instruct(llama3.3-70b-instruct)
  • DeepSeek-R1-Distill-Qwen-1.5B(deepseek-r1-distill-qwen-1.5b)
  • DeepSeek-R1-Distill-Qwen-7B(deepseek-r1-distill-qwen-7b)
  • DeepSeek-R1-Distill-Qwen-14B(deepseek-r1-distill-qwen-14b)
  • DeepSeek-R1-Distill-Qwen-32B(deepseek-r1-distill-qwen-32b)
  • DeepSeek-R1-Distill-Llama-8B(deepseek-r1-distill-llama-8b)
  • DeepSeek-R1-Distill-Llama-70B(deepseek-r1-distill-llama-70b)
  • 通义千问-Max-2024-09-19(qwen-max-0919)
  • 通义千问-Plus-2025-01-25(qwen-plus-2025-01-25)
  • 通用多模态向量(multimodal-embedding-v1)
  • 通义千问-Turbo-2024-11-01(qwen-turbo-1101)
  • 通义千问-Turbo(qwen-turbo)
  • 通义千问-Turbo-2024-09-19(qwen-turbo-0919)
  • 通义千问-Turbo-Latest(qwen-turbo-latest)
  • 深度文本重排序(gte-rerank)
  • 通义千问VL-Max-2025-01-25(qwen-vl-max-2025-01-25)
  • 通义千问VL-Max(qwen-vl-max)
  • 通义千问VL-Max-Latest(qwen-vl-max-latest)
  • 通义千问ASR(qwen-audio-asr)
  • 通义千问ASR-Latest(qwen-audio-asr-latest)
  • 通义千问ASR-2025-12-04(qwen-audio-asr-1204)
  • 通义千问VL-Max-2024-10-30(qwen-vl-max-1030)
  • 通义千问VL-OCR(qwen-vl-ocr)
  • 通义千问VL-OCR-2024-10-28(qwen-vl-ocr-1028)
  • 通义千问VL-OCR-Latest(qwen-vl-ocr-latest)
  • 通义千问VL-Max-2024-11-19(qwen-vl-max-1119)
  • 通义千问VL-Max-2024-12-30(qwen-vl-max-1230)
  • 通义千问2-VL-7B(qwen2-vl-7b-instruct)
  • 通义千问2-VL-2B(qwen2-vl-2b-instruct)
  • 通义千问2-VL-72B(qwen2-vl-72b-instruct)
  • 通义千问2.5-72B(qwen2.5-72b-instruct)
  • 通义千问2.5-32B(qwen2.5-32b-instruct)
  • 通义千问2.5-14B(qwen2.5-14b-instruct)
  • 通义千问2.5-Math-72B(qwen2.5-math-72b-instruct)
  • 通义千问2.5-Math-7B(qwen2.5-math-7b-instruct)
  • 通义千问2.5-Coder-7B(qwen2.5-coder-7b-instruct)
  • 通义千问-Math-Plus(qwen-math-plus)
  • 通义千问-Math-Plus-2024-09-19(qwen-math-plus-0919)
  • 通义千问-Math-Plus-Latest(qwen-math-plus-latest)
  • 通义千问-Math-Turbo(qwen-math-turbo)
  • 通义千问-Math-Turbo-2024-09-19(qwen-math-turbo-0919)
  • 通义千问-Math-Turbo-Latest(qwen-math-turbo-latest)
  • 通义千问-Coder-Turbo(qwen-coder-turbo)
  • 通义千问-Coder-Turbo-2024-09-19(qwen-coder-turbo-0919)
  • 通义千问-Coder-Turbo-Latest(qwen-coder-turbo-latest)
  • 通义千问2.5-Math-1.5B(qwen2.5-math-1.5b-instruct)
  • 通义千问2.5-3B(qwen2.5-3b-instruct)
  • 通义千问2.5-1.5B(qwen2.5-1.5b-instruct)
  • 通义千问2.5-0.5B(qwen2.5-0.5b-instruct)
  • 通义千问2.5-7B(qwen2.5-7b-instruct)
  • 通义万相-图生视频2.1-Plus(wanx2.1-i2v-plus)
  • AI试衣OutfitAnyone-图片分割(aitryon-parsing-v1)
  • 通义万相-文生视频2.1-Turbo(wanx2.1-t2v-turbo)
  • 通义万相-文生图2.1-Turbo(wanx2.1-t2i-turbo)
  • 通义千问VL-Max-2024-08-09(qwen-vl-max-0809)
  • 通义千问VL-Max-2024-02-01(qwen-vl-max-0201)
  • 意图分类模型(tongyi-intent-detect-v3)
  • 通义万相-文生图2.1-Plus(wanx2.1-t2i-plus)
  • 通义万相-文生视频2.1-Plus(wanx2.1-t2v-plus)
  • FLUX-schnell(flux-schnell)
  • 通义千问2-Math-72B(qwen2-math-72b-instruct)
  • 通义千问2-Math-7B(qwen2-math-7b-instruct)
  • 通义千问2-Math-1.5B(qwen2-math-1.5b-instruct)
  • 通义千问-Max-2024-04-28(qwen-max-0428)
  • Qwen-Long(qwen-long)
  • 通义千问2-72B(qwen2-72b-instruct)
  • 通义千问2-57B(qwen2-57b-a14b-instruct)
  • 通义千问2-7B(qwen2-7b-instruct)
  • 通义千问2-1.5B(qwen2-1.5b-instruct)
  • 通义千问2-0.5B(qwen2-0.5b-instruct)
  • FLUX-dev(flux-dev)
  • 通义千问1.5-开源版-110B(qwen1.5-110b-chat)
  • Llama-3.2-3B-Instruct(llama3.2-3b-instruct)
  • Llama3.2-11B-Vision(llama3.2-11b-vision)
  • Llama3.2-90B-Vision-Instruct(llama3.2-90b-vision-instruct)
  • Llama-3.2-1B-Instruct(llama3.2-1b-instruct)
  • Llama-3.1-405B-Instruct(llama3.1-405b-instruct)
  • Llama-3.1-70B-Instruct(llama3.1-70b-instruct)
  • Llama-3.1-8B-Instruct(llama3.1-8b-instruct)
  • LlaMa3-8B(llama3-8b-instruct)
  • Llama3-70B(llama3-70b-instruct)
  • Llama2-7B(llama2-7b-chat-v2)
  • Llama2-13B(llama2-13b-chat-v2)
  • ChatGLM2-6B(chatglm-6b-v2)
  • Baichuan2-开源版-7B(baichuan2-7b-chat-v1)
  • 姜子牙-13B(ziya-llama-13b-v1)
  • 通义万相-文本生成图像(wanx-v1)
  • 表情包Emoji(emoji-v1)
  • Yi-Large(yi-large)
  • 表情包Emoji-detect(emoji-detect-v1)
  • Yi-Large-Turbo(yi-large-turbo)
  • Yi-Large-RAG(yi-large-rag)
  • 通义千问-开源版-7B(qwen-7b-chat)
  • Yi-Medium(yi-medium)
  • 通义千问-Plus-2024-09-19(qwen-plus-0919)
  • 通义千问-Plus-2024-11-25(qwen-plus-1125)
  • 通义千问-Plus-2024-11-27(qwen-plus-1127)
  • 通义千问-Plus-2024-12-20(qwen-plus-1220)
  • 通义千问-Plus-2025-01-12(qwen-plus-0112)
  • 舞动人像AnimateAnyone(animate-anyone-gen2)
  • 通义千问-Math-Plus-2024-08-16(qwen-math-plus-0816)
  • 通义千问VL-Plus-2024-08-09(qwen-vl-plus-0809)
  • 声音复刻CosyVoice大模型(cosyvoice-clone-v1)
  • 舞动人像AnimateAnyone-template(animate-anyone-template-gen2)
  • 通义千问VL-Plus-2025-01-02(qwen-vl-plus-0102)
  • 舞动人像AnimateAnyone-detect(animate-anyone-detect-gen2)
  • 声动人像VideoRetalk(videoretalk)
  • 视频风格重绘(video-style-transform)
  • 悦动人像EMO(emo-v1)
  • 悦动人像EMO-detect(emo-detect-v1)
  • 通用文本向量-v3(text-embedding-v3)
  • 灵动人像LivePortrait(liveportrait)
  • 灵动人像LivePortrait-detect(liveportrait-detect)
  • 幻影人像Motionshop(motionshop-synthesis)
  • 语音合成CosyVoice大模型(cosyvoice-v1)
  • 幻影人像Motionshop-视频检测(motionshop-video-detect)
  • 通用文本向量-v2(text-embedding-v2)
  • 通用文本向量-v1(text-embedding-v1)
  • 通用文本向量-async-v2(text-embedding-async-v2)
  • 通用文本向量-async-v1(text-embedding-async-v1)
  • 幻影人像Motionshop-3D角色生成(motionshop-gen3d)
  • 通义千问2.5-Coder-3B(qwen2.5-coder-3b-instruct)
  • 通义千问2.5-Coder-32B(qwen2.5-coder-32b-instruct)
  • 通义千问2.5-Coder-14B(qwen2.5-coder-14b-instruct)
  • 通义千问2.5-Coder-0.5B(qwen2.5-coder-0.5b-instruct)
  • 通义千问-Coder-Plus-Latest(qwen-coder-plus-latest)
  • 通义千问-Coder-Plus-2024-11-06(qwen-coder-plus-1106)
  • 通义千问-Coder-Plus(qwen-coder-plus)
  • 通义千问2.5-Coder-1.5B(qwen2.5-coder-1.5b-instruct)
  • Paraformer语音识别-8k-v2(paraformer-8k-v2)
  • 通义千问-MT-Turbo(qwen-mt-turbo)
  • 通义千问-MT-Plus(qwen-mt-plus)
  • 通义万相-文生图2.0-Turbo(wanx2.0-t2i-turbo)
  • 通义千问-Audio-Turbo-2024-08-07(qwen-audio-turbo-0807)
  • 通义千问-开源版-14B(qwen-14b-chat)
  • BiLLa-开源版-7B(billa-7b-sft-v1)
  • 元语-开源版(chatyuan-large-v2)
  • Belle-开源版-13B(belle-llama-13b-2m-v1)
  • ChatGLM3-开源版-6B(chatglm3-6b)
  • Baichuan2-开源版-13B(baichuan2-13b-chat-v1)
  • Baichuan-开源版-7B(baichuan-7b-v1)
  • 通义千问-开源版-1.8B(qwen-1.8b-chat)
  • 通义千问-开源版-1.8B-32K(qwen-1.8b-longcontext-chat)
  • 通义千问-开源版-72B(qwen-72b-chat)
  • 人像风格重绘(wanx-style-repaint-v1)
  • 图像背景生成(wanx-background-generation-v2)
  • FaceChain人物图像检测(facechain-facedetect)
  • FaceChain人物写真生成(facechain-generation)
  • FaceChain人物形象训练(facechain-finetune)
  • WordArt锦书-文字纹理生成(wordart-texture)
  • WordArt锦书-文字变形(wordart-semantic)
  • StableDiffusion文生图模型-xl(stable-diffusion-xl)
  • StableDiffusion文生图模型-v1.5(stable-diffusion-v1.5)
  • OpenNLU开放域文本理解模型(opennlu-v1)
  • Paraformer语音识别-8k-v1(paraformer-8k-v1)
  • Paraformer语音识别-mtl-v1(paraformer-mtl-v1)
  • Paraformer语音识别-v1(paraformer-v1)
  • Sambert语音合成-Beth(sambert-beth-v1)
  • Sambert语音合成-Brian(sambert-brian-v1)
  • Sambert语音合成-Cally(sambert-cally-v1)
  • Sambert语音合成-Camila(sambert-camila-v1)
  • Sambert语音合成-Cindy(sambert-cindy-v1)
  • Sambert语音合成-Clara(sambert-clara-v1)
  • Sambert语音合成-Donna(sambert-donna-v1)
  • Sambert语音合成-Eva(sambert-eva-v1)
  • Sambert语音合成-Hanna(sambert-hanna-v1)
  • Sambert语音合成-Indah(sambert-indah-v1)
  • Sambert语音合成-Perla(sambert-perla-v1)
  • Sambert语音合成-Waan(sambert-waan-v1)
  • Sambert语音合成-知厨(sambert-zhichu-v1)
  • Sambert语音合成-知达(sambert-zhida-v1)
  • Sambert语音合成-知德(sambert-zhide-v1)
  • Sambert语音合成-知飞(sambert-zhifei-v1)
  • Sambert语音合成-知柜(sambert-zhigui-v1)
  • Sambert语音合成-知浩(sambert-zhihao-v1)
  • Sambert语音合成-知佳(sambert-zhijia-v1)
  • Sambert语音合成-知婧(sambert-zhijing-v1)
  • Sambert语音合成-知伦(sambert-zhilun-v1)
  • Sambert语音合成-知猫(sambert-zhimao-v1)
  • Sambert语音合成-知妙(多情感)(sambert-zhimiao-emo-v1)
  • Sambert语音合成-知茗(sambert-zhiming-v1)
  • Sambert语音合成-知墨(sambert-zhimo-v1)
  • Sambert语音合成-知娜(sambert-zhina-v1)
  • Sambert语音合成-知琪(sambert-zhiqi-v1)
  • Sambert语音合成-知倩(sambert-zhiqian-v1)
  • Sambert语音合成-知茹(sambert-zhiru-v1)
  • Sambert语音合成-知树(sambert-zhishu-v1)
  • Sambert语音合成-知硕(sambert-zhishuo-v1)
  • Sambert语音合成-知莎(sambert-zhistella-v1)
  • Sambert语音合成-知婷(sambert-zhiting-v1)
  • Sambert语音合成-知薇(sambert-zhiwei-v1)
  • Sambert语音合成-知祥(sambert-zhixiang-v1)
  • Sambert语音合成-知笑(sambert-zhixiao-v1)
  • Sambert语音合成-知雅(sambert-zhiya-v1)
  • Sambert语音合成-知晔(sambert-zhiye-v1)
  • Sambert语音合成-知颖(sambert-zhiying-v1)
  • Sambert语音合成-知媛(sambert-zhiyuan-v1)
  • Sambert语音合成-知悦(sambert-zhiyue-v1)
  • 通义千问-Max-2024-04-03(qwen-max-0403)
  • 通义千问-Max-2024-01-07(qwen-max-0107)
  • 通义千问1.5-开源版-7B(qwen1.5-7b-chat)
  • 通义千问1.5-开源版-72B(qwen1.5-72b-chat)
  • 通义千问1.5-开源版-32B(qwen1.5-32b-chat)
  • 通义千问1.5-开源版-14B(qwen1.5-14b-chat)
  • 通义千问1.5-开源版-1.8B(qwen1.5-1.8b-chat)
  • 通义千问1.5-开源版-0.5B(qwen1.5-0.5b-chat)
  • Sambert语音合成-Betty(sambert-betty-v1)
  • Sambert语音合成-知楠(sambert-zhinan-v1)
  • Baichuan2-Turbo(baichuan2-turbo)
  • 悦动人像EMO-detect-deployment(emo-detect)
  • 悦动人像EMO-deployment(emo)
  • 舞动人像AnimateAnyone-detect-deployment(animate-anyone-detect)
  • 舞动人像AnimateAnyone-deployment(animate-anyone)
  • 通义法睿-Plus-32K(farui-plus)
  • 通义万相-文本生成图像-2024-05-21(wanx-v1-0521)
  • AI试衣OutfitAnyone(aitryon)
  • 图像画面扩展(image-out-painting)
  • 通义万相-图像局部重绘(wanx-x-painting)
  • Cosplay动漫人物生成(wanx-style-cosplay-v1)
  • 通义万相-涂鸦作画(wanx-sketch-to-image-lite)
  • 鞋靴模特(shoemodel-v1)
  • 创意海报生成(wanx-poster-generation-v1)
  • Paraformer实时语音识别-v1(paraformer-realtime-v1)
  • Paraformer实时语音识别-8k-v1(paraformer-realtime-8k-v1)
  • 虚拟模特(wanx-virtualmodel)
  • 虚拟模特V2(virtualmodel-v2)
  • 锦书-百家姓生成(wordart-surnames)
  • AI试衣OutfitAnyone-图片精修(aitryon-refiner)
  • MiniMax abab6.5s-245k(abab6.5s-chat)
  • MiniMax abab6.5t-8k(abab6.5t-chat)
  • MiniMax abab6.5g-8k(abab6.5g-chat)
  • 通义千问-Plus-2024-02-06(qwen-plus-0206)
  • 通义千问-Plus-2024-06-24(qwen-plus-0624)
  • 通义千问-Turbo-2024-02-06(qwen-turbo-0206)
  • 通义千问-Turbo-2024-06-24(qwen-turbo-0624)
  • 通义千问-Plus-2024-07-23(qwen-plus-0723)
  • 通义千问-Plus-2024-08-06(qwen-plus-0806)
  • 人物实例分割(image-instance-segmentation)
  • 图像擦除补全(image-erase-completion)
  • FLUX-merged(flux-merged)
  • Doll2-开源版-12B(dolly-12b-v2)
  • Paraformer语音识别-v2(paraformer-v2)
  • Paraformer实时语音识别-v2(paraformer-realtime-v2)
  • StableDiffusion文生图模型-3.5-large(stable-diffusion-3.5-large)
  • StableDiffusion文生图模型-3.5-large-turbo(stable-diffusion-3.5-large-turbo)
  • Paraformer实时语音识别-8k-v2(paraformer-realtime-8k-v2)

更多关于阿里云百炼大模型平台API调用接口收费标准及使用说明,请移步到阿里云百炼官方平台查看 aliyunbaike.com/go/bailian 阿里云百炼平台。

### FunASR 模型 GPU 部署教程 #### 准备工作 为了在GPU上成功部署FunASR模型,需先完成一系列准备工作。这包括但不限于安装必要的依赖库以及配置相应的开发环境。对于依赖项的管理,推荐通过`pip`工具来简化操作流程[^4]。 #### 安装 ModelScope 和其他必要组件 确保已安装最新版本的ModelScope SDK以及其他可能需要用到的支持包。具体命令如下所示: ```bash pip install -U modelscope ``` 此步骤能够帮助获取最新的API接口定义和其他辅助函数支持,从而更好地适配后续的操作需求。 #### 获取并准备 Docker 映像 针对希望利用Docker容器化技术来进行快速部署的情况,官方提供了专门定制化的映像文件供用户下载使用。按照指引,在本地机器上拉取指定标签下的映像,并启动一个新的实例以便进一步设置[^2]。 ```bash docker pull registry.cn-hangzhou.aliyuncs.com/modelscope/funasr-gpu:latest docker run --gpus all -itd \ -v /path/to/local/dir:/workspace/models \ --name funasr_container \ registry.cn-hangzhou.aliyuncs.com/modelscope/funasr-gpu:latest ``` 这里特别需要注意的是,当涉及到Windows操作系统时,挂载路径应指向实际存储位置,例如 `D:\FunASR\model` 对应于 `/workspace/models` 的映射关系已经建立好,方便之后访所需资源[^3]。 #### 加载预训练模型与执行推理任务 一旦上述条件均已满足,则可以着手加载由阿里云团队预先训练好的语音识别模型,并尝试对其进行简单的测试验证其有效性。下面给出了一段Python脚本作为示范用途,展示了如何创建Pipeline对象并通过它处理输入音频数据得到最终的结果输出[^1]。 ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.auto_speech_recognition, model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', ) rec_result = inference_pipeline(audio_in='音频文件地址') print(rec_result) ``` 这段代码片段不仅实现了基本的功能调用逻辑,同时也体现了高度模块化的编程风格,使得整个过程更加清晰易懂。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值