第七节课《OpenCompass司南--大模型评测实战》

OpenCompass 大模型评测实战_哔哩哔哩_bilibili

https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md

InternStudio

一、通过评测促进模型发展

  • 面向未来拓展能力维度:评测体系需增加新能力维度(数学、复杂推理、逻辑推理、代码和智能体等),以全面评估模型性能。
  • 扎根通用能力聚焦垂直行业:在医疗、金融、法律等专业领域,评测需结合行业知识和规范,以评估模型的行业适用性。
  • 高质量中文基准:针对中文场景,需要开发能力准确评估其能力的中文评测基准,促进中文社区的大模型发展。
  • 性能评测反哺能力迭代:通过深入分析评测性能,探索模型能力形成机制,发现模型不足,研究针对性提升策略。

二、大语言模型评测中的挑战

  • 全面性
    • 大模型应用场景千变万化。
    • 模型能力演进迅速
    • 如何设计和构造可扩展的能力维度体系
  • 评测成本
    • 评测数十万道题需要大量算力资源
    • 基于人工打分的主观评测成本高昂
  • 数据污染
    • ​​​​​​​海量语料不可避免带来评测集污染
    • 亟需可靠的数据污染检测技术
    • 如何设计可动态更新高质量评测基准
  • 鲁棒性
    • ​​​​​​​大模型对提示词十分敏感
    • 多次采样情况下模型性能不稳定

三、如何评测大模型

1、根据模型类型的不同评测模型

  • 基座模型:不经过微调
  • 对话模型:
    • 指令数据有监督微调(SFT)
    • 人类偏好对齐(RLHF)
  • 公开权重的开源模型
    • 使用GPU/推理加速卡进行本地推理
  • API模型
    • 发送网络请求获取回复

2、根据评测本身的方式(客观评测与主观评测)

  • 客观评测
    • 问答题
    • 选择题
  • 主观评测:写一首诗
    • 人类评价
    • 模型评价

3、提示词工程

  • 做提示词工程,丰富题目,给模型做推理,然后做评测,评测结果更加真实反映模型性能。

  • 小样本学习:
  • 思维链技术:

4、长文本评测

  • 大海捞针:

汇集社区力量:工具-基准-榜单 三位一体

四、CompassRank:中立全面的性能榜单

  • 大模型
  • 多模态

五、CompassKit:大模型评测全栈工具链

  • 数据污染检查
    • 多种数据污染检测方法
    • 支持主流数据集污染检测
  • 更丰富的模型推理接入
    • 支持多个商业模型API
    • 支持多种推理后端
  • 长文本能力评测
    • 支持长文本大海捞针测试
    • 支持多个主流长文本评测基准
  • 中英文双语主观评测
    • 支持基于大模型评价的主观评测
    • 提供模型打分、模型对战多种能力
    • 灵活切换上百种评价模型

OpenCompass评测流水线

自定义任意模型和数据集,多模型和数据集进行切分,做到并行化(多GPU或任务),多种输出方式

  • VLMEvalKit:多模态评测工具
  • Code-Evaluator:代码评测工具
  • MixtralKit MoE:模型入门工具

六、CompassHub:高质量评测基准社区

开源开放,共建共享的大模型评测基准社区

七、能力维度全面升级

八、夯实基础:自研高质量大模型评测基准

  • MathBench:多层次数学能力评测基准(计算、小学、初中、高中、大学、CE平均分)
    • 梯度难度
    • 题目来源多种多样
    • 循环测评
  •  CIBench:代码解释器能力评测基准
    • 任务和软件的多样性
    • 评测基准具有高度可拓展性
    • 多难度等级设计(10轮以上交互)
  • T-Eval:大模型细粒度工具能力评测基准
    • 规划
    • 检索
    • 指令遵循
    • 推理
    • 理解
    • 评价

各行业垂直领域合作

九、实战

1、安装、

studio-conda -o internlm-base -t opencompass
source activate opencompass
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
pip install -r requirements.txt
2、数据准备
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

3、查看支持的数据集和模型

列出所有跟 InternLM 及 C-Eval 相关的配置

python tools/list_configs.py internlm ceval

4、启动评测

评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。 OpenCompass 默认并行启动评估过程。--debug 模式启动评估,并检查是否存在问题。

pip install protobuf
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU

 

python run.py
--datasets ceval_gen \ #数据集
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace 模型路径
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
--model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
--max-seq-len 1024 \  # 模型可以接受的最大序列长度
--max-out-len 16 \  # 生成的最大 token 数
--batch-size 2  \  # 批量大小
--num-gpus 1  # 运行模型所需的 GPU 数量
--work-dir "xxxx/xxx" #结果保存路径,默认outputs/default
--reuse latest #指定时间戳,接着之前的时间戳去跑
--debug #debug模式显示,默认存在log文件夹下
python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 1024 --max-out-len 16 --batch-size 2 --num-gpus 1 --debug

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值