YOLOv8 添加可变形卷积 DCNv2
介绍
YOLO(You Only Look Once)是实时目标检测中最著名的模型之一。为了增强 YOLOv8 的特性,可以引入可变形卷积 (Deformable Convolutional Networks, DCN) v2。这种卷积层通过学习可变形的采样位置,能够更好地适应物体几何结构的变化,从而提升模型识别复杂形状和姿态的能力。
应用使用场景
- 复杂背景下的目标检测:在背景复杂或干扰较多的图像中提高检测准确性。
- 非刚性物体检测:如人、动物等具有显著形变的目标识别。
- 实时视频分析:在动态环境中快速调整采样策略以提高检测效果。
原理解释
DCNv2 是对标准卷积的扩展,它利用空间上的自由度来改变标准卷积操作的采样位置。具体来说,DCNv2 在每次卷积操作前,通过学习偏移量来动态调整卷积核的采样位置,以更好地捕获物体的边界和细节。
核心特性
- 动态采样:根据输入数据自适应地调整采样点。
- 形变灵活性