变换矩阵的左乘与右乘区别

        这段时间学习矩阵运算,遇到一个问题,教材里面矩阵乘法多采用Ax作为线性变换,而到了实际应用场景,却发现也有x^{t}A的右乘计算,一时间不明白左乘矩阵和右乘矩阵的区别。

        先将结论附上,左乘矩阵,相当于坐标系不动,对坐标(列向量)进行矩阵操作(线性变换)。右乘矩阵,相当于坐标(行向量)不动,对坐标系进行变换。具体举一个例子作为说明:

由新基底\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2}& \frac{\sqrt{2}}{2} \end{bmatrix}做线性变换(x轴y轴绕z轴旋转45度),记为B,则向量y(1, 1)分别作左乘,右乘运算:

左乘:By^{t} = (0, \sqrt{2}) ,相当(1, 1)绕z轴旋转45度。

右乘:yB = (\sqrt{2}, 0) ,相当二维坐标系绕z轴旋转45度,原向量在新坐标系的表示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值