控制理论中的几种稳定性介绍

控制理论中的几种稳定性介绍

  • 李雅普诺夫意义下的稳定
  • 渐近稳定
  • 指数稳定
  • UUB(Uniformly ultimately bounded)稳定
  • 输入-状态稳定
  • 输入-输出稳定

1、 李雅普诺诺夫意义下的稳定:
对于 ∀   ϵ > 0 \forall~\epsilon>0  ϵ>0, ∃   δ ( t 0 , ϵ ) > 0 \exist ~\delta(t_0,\epsilon)>0  δ(t0,ϵ)>0, 使得当 ∥ x ( t 0 ) ∥ < δ ( t 0 , ϵ ) \|x(t_0)\|<\delta(t_0,\epsilon) x(t0)<δ(t0,ϵ) 时, 有: ∥ x ( t , t 0 , x 0 ) ∥ < ϵ \|x(t,t_0,x_0)\|<\epsilon x(t,t0,x0)<ϵ成立。则称系统关于平衡状态 x = 0 x=0 x=0 是李雅普诺夫意义下稳定的。
举例: x ˙ = − e − t e − t + 1 x \dot x=-\frac{e^{-t}}{e^{-t}+1}x x˙=et+1etx

2、 渐近稳定:
如果系统平衡状态 x e = 0 x_e=0 xe=0 是李雅普诺夫意义下稳定的,且从任意有界邻域 S ( δ ) S(\delta) S(δ) 出发的任意状态轨迹,当 t t t 趋于无穷大时,该状态轨迹都离不开 S ( δ ) S(\delta) S(δ), 且收敛到 0 0 0, 则称平衡状态 x e = 0 x_e=0 xe=0 是渐近稳定的。
举例: x ˙ = − 1 t + 1 x \dot x=-\frac{1}{t+1}x x˙=t+11x

3、指数稳定:
如果系统平衡状态 x e = 0 x_e=0 xe=0 是渐近稳定的,且状态轨迹收敛到平衡点的速度大于等于某个关于 t t t 的指数函数,则称平衡状态 x e = 0 x_e=0 xe=0 是指数稳定的。
举例: x ˙ = − x \dot x=-x x˙=x

4、UUB(Uniformly ultimately bounded)稳定:
(评论区补充)

5、输入-状态稳定:
存在一个 K L \mathcal{KL} KL 类函数 β \beta β 和一个 K \mathcal{K} K 类函数 γ \gamma γ, 使对于 ∀ t 0 \forall t_0 t0 ∀ x ( t 0 ) \forall x(t_0) x(t0) 和任意有界输入 u ( t ) u(t) u(t), 解对于 ∀ t > t 0 \forall t>t_0 t>t0 都存在且满足:
∥ x ( t ) ∥ ≤ β ( ∥ x ( t 0 ) ∥ , t − t 0 ) + γ ( sup ⁡ t 0 ≤ τ ≤ t ∥ u ( τ ) ∥ ) \|x(t)\|\leq \beta\left(\|x(t_0)\|,t-t_0\right)+\gamma\left(\sup_{t_0\leq\tau\leq t}\|u(\tau)\|\right) x(t)β(x(t0),tt0)+γ(supt0τtu(τ)), 那么系统的输入-状态稳定的。

6、输入-输出稳定:
对于有界的输入信号,若系统所产生的输出信号也是有界的,则称系统是输入输出稳定的。在这里插入图片描述在这里插入图片描述

💡💡💡 注意💡💡💡
1、渐近稳定的系统一定是李雅普诺夫意义下稳定的;李雅普诺夫意义下稳定的系统不一定是渐近稳定的。
2、指数稳定是渐进稳定的一种,其收敛速度可以描述;渐近稳定的收敛速度可能很慢。
3、在线性定常系统下,系统内稳一定外稳,但是外稳不一定内稳。
4、对于输入-状态稳定(ISS),无输入情况下,针对完全能控能观的线性系统,李雅普诺夫意义下稳定、输入-输出稳定、输入-状态稳定三者等价。而对于更一般的非线性系统,ISS是一个比一致渐进稳定性更严格的性质。

💡💡💡 Matlab2016-Simulink-仿真比较(程序可在CSDN获取,搜索"simulink仿真20210408")💡💡💡

在这里插入图片描述

### 回答1: 现代控制理论是一门控制理论的学科,它是从二十世纪五六十年代起逐渐形成的。与传统控制理论不同的是,现代控制理论主要基于数学方法和计算机技术,更注重系统的数学模型建立、控制算法设计和仿真分析等方面的理论研究和实践应用。 而张嗣瀛则是现代控制理论的杰出代表之一,他在现代控制理论发展史上具有举足轻重的地位。张嗣瀛开创了现代控制理论的一个新领域——正-反问题,在此领域的研究成果为后来的系统控制理论、多目标控制等方面的研究提供了强有力的工具和理论基础。 同时,张嗣瀛也是Matlab控制工具箱的开发者之一。Matlab控制工具箱是Matlab平台上的一个控制系统分析与设计工具集,它提供了丰富的控制系统分析和设计函数、图形界面等方便开发者进行控制系统的建模、仿真、设计和控制等工作。张嗣瀛和他的研究团队在Matlab控制工具箱开发做出了重要的贡献,为现代控制理论的推广和应用提供了坚实的技术支持和保障。 综上所述,现代控制理论和张嗣瀛Matlab控制工具箱的发展对现代制造业、机器人技术、航空航天、自动化等领域的发展有着重要的意义和影响。相信在不久的将来,现代控制理论Matlab控制工具箱将会在更多的领域得到广泛应用和推广。 ### 回答2: 现代控制理论是指在20世纪50年代之后,随着信息时代的到来,科技的飞速发展,控制理论从传统的经典控制理论转向了更加先进的现代控制理论。现代控制理论包括了状态空间理论、观测器理论、鲁棒控制、自适应控制、滑模控制、神经网络控制、模糊控制等,其每一种理论都有其独特的优势和适用范围。 张嗣瀛是国近代著名科学家、自动化专家,他对于现代控制理论的研究与发展做出了重要的贡献。在他的学术研究,他提出了一系列的控制理论方法和技术,如广义控制理论、时滞系统理论、广义线性系统理论、延迟系统理论等,这些方法和技术在实际应用有广泛的应用价值,对于推动国的自动化技术和可持续发展具有积极的意义。 而MATLAB则是一个著名的数学计算软件,在现代控制理论研究也具有非常重要的作用。MATLAB提供了丰富的数学库和工具箱,可以方便地进行各种数学计算和仿真实验,支持多种编程语言,具有高效、精确、可靠的计算能力。通过MATLAB,研究人员可以快速地验证和分析各种现代控制理论方法的优劣以及其在复杂系统的应用效果,并将结果可视化,使得控制系统的设计和实现更加简单、高效、可靠。 因此,现代控制理论和张嗣瀛的理论贡献与MATLAB的计算工具的结合,为推动国的自动化技术的发展和提高我国科技水平做出了十分重要的贡献。 ### 回答3: 现代控制理论是一种新技术,它基于数学模型和计算机技术,研究各种控制系统的设计方法和优化方法。张嗣瀛先生是现代控制理论的代表人物之一,他是国数学教育和科技事业的杰出贡献者,也是现代控制理论的奠基人之一。张嗣瀛的主要贡献在于他提出的“广义可控性理论”,这个理论被广泛应用于自动控制系统设计与分析MATLAB (Matrix Laboratory) 是一种强大的数学软件,它提供了丰富的数学库和工具箱,可以快速计算和分析复杂的数学问题。现代控制理论MATLAB 相结合,可以极大地提高控制系统设计和分析的效率。MATLAB 提供了许多可视化工具和仿真环境,可以帮助控制工程师更快地验证和测试他们的设计。 使用MATLAB 进行现代控制系统设计和分析,可以从以下几个方面进行: 1. 系统建模:使用MATLAB 的符号计算工具进行系统建模,可以快速得到系统的状态空间表示、传递函数和频率响应等重要参数。 2. 控制器设计:使用MATLAB 控制工具箱可以方便地设计和优化各种控制器,包括PID 控制器、LQR 控制器、H_inf 控制器等。 3. 仿真环境:MATLAB 提供了丰富的仿真环境和可视化工具,可以帮助工程师验证控制系统的性能和稳定性。 4. 实时控制MATLAB 可以与各种工业控制器、PLC 和 DAQ 软件集成,实现实时控制和数据采集。 综合以上几点,现代控制理论MATLAB 相结合,可以大大提高控制系统设计和分析的效率和准确性。当然,这需要工程师具备一定的数学和计算机技能,才能更好地应用这种技术。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Biubiubiubiubiubiubo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值