控制理论中的几种稳定性介绍
- 李雅普诺夫意义下的稳定
- 渐近稳定
- 指数稳定
- UUB(Uniformly ultimately bounded)稳定
- 输入-状态稳定
- 输入-输出稳定
1、 李雅普诺诺夫意义下的稳定:
对于
∀
ϵ
>
0
\forall~\epsilon>0
∀ ϵ>0,
∃
δ
(
t
0
,
ϵ
)
>
0
\exist ~\delta(t_0,\epsilon)>0
∃ δ(t0,ϵ)>0, 使得当
∥
x
(
t
0
)
∥
<
δ
(
t
0
,
ϵ
)
\|x(t_0)\|<\delta(t_0,\epsilon)
∥x(t0)∥<δ(t0,ϵ) 时, 有:
∥
x
(
t
,
t
0
,
x
0
)
∥
<
ϵ
\|x(t,t_0,x_0)\|<\epsilon
∥x(t,t0,x0)∥<ϵ成立。则称系统关于平衡状态
x
=
0
x=0
x=0 是李雅普诺夫意义下稳定的。
举例:
x
˙
=
−
e
−
t
e
−
t
+
1
x
\dot x=-\frac{e^{-t}}{e^{-t}+1}x
x˙=−e−t+1e−tx
2、 渐近稳定:
如果系统平衡状态
x
e
=
0
x_e=0
xe=0 是李雅普诺夫意义下稳定的,且从任意有界邻域
S
(
δ
)
S(\delta)
S(δ) 出发的任意状态轨迹,当
t
t
t 趋于无穷大时,该状态轨迹都离不开
S
(
δ
)
S(\delta)
S(δ), 且收敛到
0
0
0, 则称平衡状态
x
e
=
0
x_e=0
xe=0 是渐近稳定的。
举例:
x
˙
=
−
1
t
+
1
x
\dot x=-\frac{1}{t+1}x
x˙=−t+11x
3、指数稳定:
如果系统平衡状态
x
e
=
0
x_e=0
xe=0 是渐近稳定的,且状态轨迹收敛到平衡点的速度大于等于某个关于
t
t
t 的指数函数,则称平衡状态
x
e
=
0
x_e=0
xe=0 是指数稳定的。
举例:
x
˙
=
−
x
\dot x=-x
x˙=−x
4、UUB(Uniformly ultimately bounded)稳定:
(评论区补充)
5、输入-状态稳定:
存在一个
K
L
\mathcal{KL}
KL 类函数
β
\beta
β 和一个
K
\mathcal{K}
K 类函数
γ
\gamma
γ, 使对于
∀
t
0
\forall t_0
∀t0、
∀
x
(
t
0
)
\forall x(t_0)
∀x(t0) 和任意有界输入
u
(
t
)
u(t)
u(t), 解对于
∀
t
>
t
0
\forall t>t_0
∀t>t0 都存在且满足:
∥
x
(
t
)
∥
≤
β
(
∥
x
(
t
0
)
∥
,
t
−
t
0
)
+
γ
(
sup
t
0
≤
τ
≤
t
∥
u
(
τ
)
∥
)
\|x(t)\|\leq \beta\left(\|x(t_0)\|,t-t_0\right)+\gamma\left(\sup_{t_0\leq\tau\leq t}\|u(\tau)\|\right)
∥x(t)∥≤β(∥x(t0)∥,t−t0)+γ(supt0≤τ≤t∥u(τ)∥), 那么系统的输入-状态稳定的。
6、输入-输出稳定:
对于有界的输入信号,若系统所产生的输出信号也是有界的,则称系统是输入输出稳定的。
💡💡💡 注意💡💡💡
1、渐近稳定的系统一定是李雅普诺夫意义下稳定的;李雅普诺夫意义下稳定的系统不一定是渐近稳定的。
2、指数稳定是渐进稳定的一种,其收敛速度可以描述;渐近稳定的收敛速度可能很慢。
3、在线性定常系统下,系统内稳一定外稳,但是外稳不一定内稳。
4、对于输入-状态稳定(ISS),无输入情况下,针对完全能控能观的线性系统,李雅普诺夫意义下稳定、输入-输出稳定、输入-状态稳定三者等价。而对于更一般的非线性系统,ISS是一个比一致渐进稳定性更严格的性质。
💡💡💡 Matlab2016-Simulink-仿真比较(程序可在CSDN获取,搜索"simulink仿真20210408")💡💡💡