1.backbone
这个单词原意指的是人的脊梁骨,后来引申为支柱,核心的意思
在深度学习中,"backbone"(骨干网络)通常指的是神经网络模型中负责提取特征的主干部分。它通常由一系列的卷积层、池化层和其他特征提取层构成,负责对输入数据进行抽象表示,从而捕捉输入数据的特征并为后续任务提供良好的特征表示。
举例来说,对于图像识别任务,常用的骨干网络包括VGG、ResNet、MobileNet等,它们在卷积层和池化层的组合上有所不同,但都能有效地提取图像的特征,成为整个图像识别模型的核心部分。在目标检测与分割任务中,常用的骨干网络包括ResNet、EfficientNet等,它们在提取图像特征的能力上得到了有效的验证,并被广泛应用于实践中。
总之,骨干网络在深度学习中扮演着关键的角色,它的设计与选择对于模型的性能和训练效果有着重要的影响。
参考链接:https://blog.csdn.net/fangweijiex/article/details/123356105