2.4 指数加减速

本文深入探讨指数加减速在运动控制中的应用,对比不同加减速算法,详细介绍了指数加减速的计算公式,并通过算例展示和MATLAB代码实现,阐述了如何解决连续轨迹速度控制的问题。
摘要由CSDN通过智能技术生成

2.4 指数加减速

本文首先对比了包括指数加减速在内的常见加减速控制方法的优缺点及使用场合。其次,给出了指数加减速的加速度,速度和位移的计算公式。给出了指数加减速曲线求解的完备方法,详细推导了求解过程。对于理论分析的每种情形,给出了算例展示。依据推导的公式,实现指数加减速曲线计算的matlab代码。

常见加减速曲线及特点

加减速算法是运动控制中的关键技术之一,也是实现高速、高效率的关键因素之一。在工业控制中,一方面要求加工的过程平滑、稳定,柔性冲击小;另一方面需要响应时间快,反应迅速。在保证控制精度的前提下来提高加工效率,实现机械运动平滑稳定,是目前工业加工中一直要解决的关键问题。当前运动控制系统中常用的加减速算法主要有:梯形加减速、S形加减速、指数加减速、三角函数加减速等。

加减速曲线 优点 缺点
梯形加减速 这种算法的优点是算法简单,占用机时少,机床响应快,效率高。 加速度有突变,机床运动存在柔性冲击。另外,速度的过渡不够平滑,运动精度低。因此,这种加减速方法一般用于起停、进退刀等辅助运动中。
S形加减速 s型加减速在任何一点的加速度都是连续
### 步进电机实现指数加减速控制的方法 对于步进电机而言,通过调整发送给电机的脉冲频率可以改变其转动速度。为了实现指数加减速控制,需要设计一个函数来计算每次发出脉冲的时间间隔,使得这些时间间隔按照指数规律变化。 #### 设计思路 假设初始时刻的速度为V0,在t秒后的目标速度VT可以通过下面公式表示: \[ VT = V0 * e^{(k*t)} \] 其中\(e\)是自然常数约等于2.71828, \(k\)是一个系数用于调节加速过程中的陡峭程度。当\( k>0 \)时表示加速;而\( k<0 \)时代表减速。基于此模型,可以根据当前设定的速度值动态调整相邻两次触发之间等待的时间长度,从而达到期望的效果[^4]。 #### C语言代码实例 下面是针对STM32平台编写的一个简单的例子,展示了如何利用定时器中断服务程序配合上述数学表达式完成基本功能: ```c #include "stm32f1xx_hal.h" // 定义全局变量 float v0; // 初始速度 float vt; // 当前瞬时速度 float t; // 时间参数 float k; // 增益因子 uint32_t lastTick; void TIM2_IRQHandler(void){ HAL_TIM_IRQHandler(&htim2); } void StartExponentialAcceleration(float targetSpeed,float durationSecs){ // 初始化参数 v0 = getCurrentSpeed(); // 获取起始速度 vt = v0; t = 0; k = log(targetSpeed/v0)/durationSecs ; // 计算增益 __HAL_TIM_SET_COUNTER(&htim2,0); // 清零计数值 lastTick=HAL_GetTick(); while(t<=durationSecs){ // 更新vt并设置新的PWM占空比或其他形式的速度指令... setMotorSpeed(vt); // 等待直到经过了一定时间段再继续循环体内的操作 uint32_t currentTick = HAL_GetTick(); if((currentTick-lastTick)>=1000){ // 每隔一秒更新一次状态 lastTick=currentTick; t+=1; vt=v0*exp(k*t); } } } ``` 这段代码片段展示了一个简化版的过程框架,实际项目中可能还需要考虑更多细节比如边界条件处理、异常情况下的保护机制等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galaxy_Robot

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值