2.4 指数加减速

本文深入探讨指数加减速在运动控制中的应用,对比不同加减速算法,详细介绍了指数加减速的计算公式,并通过算例展示和MATLAB代码实现,阐述了如何解决连续轨迹速度控制的问题。
摘要由CSDN通过智能技术生成

2.4 指数加减速

本文首先对比了包括指数加减速在内的常见加减速控制方法的优缺点及使用场合。其次,给出了指数加减速的加速度,速度和位移的计算公式。给出了指数加减速曲线求解的完备方法,详细推导了求解过程。对于理论分析的每种情形,给出了算例展示。依据推导的公式,实现指数加减速曲线计算的matlab代码。

常见加减速曲线及特点

加减速算法是运动控制中的关键技术之一,也是实现高速、高效率的关键因素之一。在工业控制中,一方面要求加工的过程平滑、稳定,柔性冲击小;另一方面需要响应时间快,反应迅速。在保证控制精度的前提下来提高加工效率,实现机械运动平滑稳定,是目前工业加工中一直要解决的关键问题。当前运动控制系统中常用的加减速算法主要有:梯形加减速、S形加减速、指数加减速、三角函数加减速等。

加减速曲线 优点 缺点
梯形加减速 这种算法的优点是算法简单,占用机时少,机床响应快,效率高。 加速度有突变,机床运动存在柔性冲击。另外,速度的过渡不够平滑,运动精度低。因此,这种加减速方法一般用于起停、进退刀等辅助运动中。
S形加减速 s型加减速在任何一点的加速度都是连续
指数减速算法是一种常用于运动控制中的算法,用于实现平滑的减速过程。Matlab可以通过编写程序来实现指数减速算法。 以下是一个简单的Matlab程序,用于实现指数减速算法: ``` clc; clear; close all; % 设定参数 t = linspace(0,10,1000); % 时间 a = 2; % 最大速度 v0 = 0; % 初始速度 v1 = 10; % 目标速度 s0 = 0; % 初始位移 s1 = 100; % 目标位移 T = 10; % 总时间 % 计算速段和减速段的时间 Ta = v1/a; % 速时间 Td = Ta; % 减速时间 % 计算匀速段的时间 Ts = T - Ta - Td; % 计算匀速段、匀速段、匀减速段的位移和速度 sa = s0 + 0.5*a*t.^2; % 速段位移 va = a.*t; % 速段速度 ss = sa(end) + v1*Ts; % 匀速段位移 vs = v1*ones(size(t)); % 匀速段速度 sd = s1 - 0.5*a*(T-t).^2; % 减速段位移 vd = v1 - a.*(T-t); % 减速速度 % 绘制位移-时间曲线和速度-时间曲线 s = [sa, ss, sd]; v = [va, vs, vd]; plot(t,s,'-',t,v,'--'); xlabel('时间'); ylabel('位移/速度'); legend('位移','速度'); ``` 在程序中,首先设定了一些参数,包括时间、最大速度、初始速度、目标速度、初始位移、目标位移和总时间。然后,根据这些参数计算速段和减速段的时间,以及匀速段的时间。接着,计算匀速段、匀速段、匀减速段的位移和速度,并绘制位移-时间曲线和速度-时间曲线。 这个程序只是一个简单的示例,实际的指数减速算法可能会更复杂。不过,通过编写类似的程序,可以方便地实现指数减速算法,并且可以根据需要进行修改和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galaxy_Robot

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值