3.3 姿态插补概述

本文探讨了工业机器人姿态规划的重要性和挑战,重点关注欧拉角、旋转矩阵和四元数三种姿态表示方法在插补中的应用。尽管欧拉角描述简单,但存在万向节锁死和插值困难问题;旋转矩阵运算量大,数据冗余高;四元数则能有效避免万向节锁死,实现平滑插值,广泛应用于姿态规划。然而,现有的四元数插补方法在连续性和实时性方面仍有待提高。
摘要由CSDN通过智能技术生成

3.3 姿态插补概述

摘自:谢文雅.基于四元数的工业机器人姿态规划与插补算法的研究[D].华中科技大学[2023-09-20]

背景

近年来,工业机器人在电子电气、汽车等智能生产与加工领域得到快速的普及和使用,各领域对工业机器人的响应速度、运动精度、平稳性以及综合性能等各个方面要求不断提高。机器人的运动控制作为决定其性能的关键,是当今机器人研究的难点与重点,尚存在很多问题需要被解决[5]。因而,对于机器人的轨迹规划进行可靠且精确的控制则尤为重要了。其中,机器人的轨迹规划一般包括关节空间和笛卡尔空间两种规划,又由于在笛卡尔空间中,其规划出来的曲线与实际运动曲线一致,因此,对于末端有特定轨迹要求的规划一般选取在笛卡尔空间进行。又基于位姿的具体特性,机器人在笛卡尔空间内的轨迹规划可以拆分为由机器人末端位置和姿态两部分规划构成[6]。目前,对于机器人末端位置规划的研究已经较为成熟,而对于机器人末端姿

态的规划,一方面,姿态规划方面的研究较少,不够全面和完善;另一方面,姿态位于 SO(3),即三维旋转群,很多对于欧几里德空间中位置曲线构造的性质并不能直接应用于构造姿态曲线,且姿态的描述方式相对复杂,研究比较困难。而机器人末端的姿态规划对于机器人的加工质量和效率都有着决定性的作用,因此对机器人末端姿态规划的研究至关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galaxy_Robot

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值