姿态估计:DiffPose

DiffPose是一种新型的3D姿态估计框架,受到扩散模型的启发,将姿态估计视为反向扩散过程。它通过姿态不确定性分布的特定初始化、基于高斯混合模型的正向扩散和情境条件的反向扩散,解决了3D姿态估计中的不确定性问题。DiffPose在Human3.6M和MPI-INF-3DHP基准上表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接:https://arxiv.org/pdf/2211.16940.pdf
论文代码:https://github.com/GONGJIA0208/Diffpose
项目网址:https://gongjia0208.github.io/Diffpose/
论文出处:2023 CVPR
论文单位:新加坡科技与设计大学

摘要

  • 由于固有的模糊性和遮挡,单目三维人体姿态估计具有很大的挑战性,这往往导致高度的不确定性和不确定性。
  • 另一方面,扩散模型(diffusion models) 最近成为从噪声中生成高质量图像的有效工具。
  • 受其能力的启发,我们探索了一种新的姿态估计框架(DiffPose),该框架将3D姿态估计制定为反向扩散过程。
  • 我们将新颖的设计融入到我们的DiffPose中,以促进3D姿态估计的扩散过程:一个姿态不确定性分布的姿态特定初始化一个基于高斯混合模型的正向扩散过程,以及一个情境条件下的反向扩散过程
  • 我们提出的DiffPose在广泛使用的姿态估计基准Human3.6M和MPI-INF-3DHP上显著优于现有方法。

1. 简介

  • 三维人体姿态估计是一项重要的任务,旨在从图像或视频中预测人体关节的三维坐标,它在增强现实、手语翻译和人机交互等领域有着广泛的应用,近年来引起了人们的广泛关注。

  • 一般来说,主流的方法是分两个阶段进行三维姿态估计: 首先使用二维姿态检测器获得二维姿态,然后进行二维到三维的提升 (其中提升过程是最近的研究关注的主要方面)。

  • 然而,尽管取得了长足的进步,单目3D姿态估计仍然具有挑战性。

  • 特别是,由于许多挑战,包括固有的深度模糊和潜在的遮挡,很难从单目数据中准确预测3D姿态,这往往导致高度的不确定性。

  • 另一方面,**扩散模型(diffusion models)**最近作为一种生成高质量图像的有效方法而流行起来。

  • 通常,扩散模型能够通过逐步去除随机(不确定)噪声的多个步骤生成与指定数据分布 (例如,自然图像) 相匹配的样本。

  • 直观地说,这种渐进式去噪范式有助于将分布之间的巨大差距(从高度不确定的分布到确定的分布)分解为较小的中间步骤,从而成功地帮助模型收敛到平滑地从目标数据分布生成样本。

  • 受到扩散模型的强大能力的启发,即使从具有高不确定性 (例如随机噪声) 的起点也能生成逼真的样本,在这里,我们的目标是解决3D姿态估计,这也涉及处理不确定性(3D姿态)。

  • 在本文中,我们提出了一种新的框架DiffPose,它代表了一种新的基于扩散的3D姿态估计方法,它也遵循了主流的两阶段pipeline。

  • 简言之,DiffPose 建模3D姿态估计流程作为一个反向扩散过程,其中我们逐步将具有高不确定性的3D姿势分布转换为具有低不确定性的3D姿势

  • 直观地,我们可以将确定的 ground-truth 3D姿态视为热力学背景下的粒子,粒子在开始时可以整齐地聚集在一起,形成一个清晰的姿态,不确定性低; 最后,这些粒子在空间中随机扩散,导致高度不确定性。

  • 粒子从低不确定度向高不确定度演化的过程称为正向扩散过程

  • 姿态估计任务旨在执行与此过程恰恰相反的过程,即反向扩散过程

  • 我们接收到一个在三维空间中不确定的初始二维姿态&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值