可视化绘图技巧100篇分析篇(一)-数据降维NMDS分析

本文介绍了数据降维方法PCA、PCoA和NMDS的区别,强调了NMDS在处理非线性关系时的优势。PCA基于线性模型,适合物种少、环境因素变化小的情况;而PCoA和NMDS则用于反映样本间距离矩阵的关系,特别是NMDS,它弱化数值差异,注重排序关系。文章还探讨了如何判断NMDS的象限,并提到了R语言在进行β多样性分析和NMDS绘图中的应用。
摘要由CSDN通过智能技术生成

目录

前言

几个高频面试题目

 PCA、PCoA和NMDS有什么区别?

主成分分析 | Principal Components Analysis,PCA

主坐标分析 | principal co-ordinates analysis,PCoA

非度量多维标度分析法 | Non-metric multidimensional scaling,NMDS

如何判断NMDS的第一二三四象限?

绘图工具

R语言

β多样性之NMDS分析

数量生态_NMDS分析

R语言绘制NMDS图


前言

非度量多维尺度分析(Non-metric multidimensional scaling,NMDS)是间接梯度分析方法,其基于距离或不相似矩阵产生排序。与尝试最大化排序中的对象之间的方差或对应关系的方法不同,NMDS试图尽可能接近地表示低维空间中的对象之间的成对不相似性。可以使用任何相异系数或距离度量来构建用作输入的距离矩阵。
NMDS是一种基于排名的方法。这意味着原始距离数据被等级替换。因此,对象A不是距离对象B远离2.1个单位、对象C远离4.4个单位,对象C是对象A的“第一”远,而对象B是对象B的“第二”远。虽然丢失了关于距离大小的信息,但基于秩的方法通常对于没有可识别分布的数据更稳健。

如果排序的目的不是最大限度地保留对象之间的实际距离,只是反映对象之间的顺序关系,这个时候NMDS是一种可行的解决方案。NMDS与PCoA同属于多维尺度分析(multidimensional scaling,MDS),与PCoA一样,NMDS可以基于任何类型距离矩阵对对象进行排序。与PCoA不同的是,NMDS不再基于距离矩阵数值,而是基于排位顺序进行计算,是非线性的模型能更好的反映生态数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值