目录
主成分分析 | Principal Components Analysis,PCA
主坐标分析 | principal co-ordinates analysis,PCoA
非度量多维标度分析法 | Non-metric multidimensional scaling,NMDS
前言
非度量多维尺度分析(Non-metric multidimensional scaling,NMDS)是间接梯度分析方法,其基于距离或不相似矩阵产生排序。与尝试最大化排序中的对象之间的方差或对应关系的方法不同,NMDS试图尽可能接近地表示低维空间中的对象之间的成对不相似性。可以使用任何相异系数或距离度量来构建用作输入的距离矩阵。
NMDS是一种基于排名的方法。这意味着原始距离数据被等级替换。因此,对象A不是距离对象B远离2.1个单位、对象C远离4.4个单位,对象C是对象A的“第一”远,而对象B是对象B的“第二”远。虽然丢失了关于距离大小的信息,但基于秩的方法通常对于没有可识别分布的数据更稳健。
如果排序的目的不是最大限度地保留对象之间的实际距离,只是反映对象之间的顺序关系,这个时候NMDS是一种可行的解决方案。NMDS与PCoA同属于多维尺度分析(multidimensional scaling,MDS),与PCoA一样,NMDS可以基于任何类型距离矩阵对对象进行排序。与PCoA不同的是,NMDS不再基于距离矩阵数值,而是基于排位顺序进行计算,是非线性的模型能更好的反映生态数据。