全国大学生数据统计与分析竞赛2021年【本科组】-B题:基于统计分析与随机森林的用户消费行为价值分析(附优秀论文级R语言代码实现)

511 篇文章 370 订阅 ¥49.90 ¥99.00
这篇博客详细介绍了2021年全国大学生数据统计与分析竞赛本科组B题,主要探讨了用户消费行为的价值分析,通过R语言进行数据预处理,包括文本和时间数据处理、缺失值和异常值处理。接着,分析了用户地域分布和登录情况,特别是用户登录时长、进群状态与完成课节数的关系。文章重点在于利用随机森林模型预测用户是否下单,进行了超参数选择、训练集划分和模型评估。最后提出了营销战略转型的建议。
摘要由CSDN通过智能技术生成

目录

摘要

1 数据预处理

1.1 数据合并

1.2 文本数据处理

1.3 时间数据处理

1.4 缺失值、异常值处理

2 地域分析与登录情况分析

2.1 地域分析

2.1.1 用户的地域分布情况

2.1.2 购课用户的地域分布情况

2.2 登录情况分析

2.2.1 整体概览

2.2.2 进群与否,登录时长,完成课节数的关系

2.2.3 否添加销售好友,优惠券与购课数量的关系

3 预测用户是否下单

3.1 数据预处理与特征工程

3.1.1 数据预处理

3.1.2 特征工程

3.2 建立模型

3.2.1 随机森林模型简介

3.2.2 超参数选择

3.2.3 训练集与测试集划分

3.2.4 模型训练与预测

3.2.5 结果评估与分析

4 建议措施

4.1 营销战略制定的转型

4.2 营销组织结构的转型

4.3 营销调查工作的转型

代码实现

数据预处理代码(R 语言):

 登录情况分析及绘图代码(R 语言):

任务三 预测代码(python)


摘要

在互联网飞速发展时代,用户消费行为的价值分析成为了各公司发展营销的必要手段。
我们利用用户属性行为数据集,进行了统计分析和机器学习建模预测,为企业筛选出了高质
量用户,优化了营销成本。
对于任务一,在数据预处理中,我们发现三张表格存在数据不匹配、缺失、异常的问题,
伴随着城市变量的文本数据以及试听课报名时间的时间序列数据,对之后的数据分析以及机
器学习造成了困难。我们主要利用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值