探索未来移动的精准导航:CT-LIO 持续时间激光雷达惯性里程计

探索未来移动的精准导航:CT-LIO 持续时间激光雷达惯性里程计

去发现同类优质开源项目:https://gitcode.com/

CT-LIO(Continuous-Time LiDAR-Inertial Odometry)是一个创新的、精确且鲁棒的激光雷达惯性里程计解决方案,融合了连续时间的激光约束(ct-icp)与IMU数据,以实现高速运动下的稳健定位(如lio-sam)。该项目不仅提供了分析导数自动导数两种ct-icp方法,还包含了退化检测功能,确保在各种复杂环境中的稳定性能。

道路演示

查看完整的视频演示,感受CT-LIO的强大之处!

更新动态

  • 2023年08月18日:
    • 支持Pandar系列LiDAR,并已在Hilti2022数据集上测试。
    • 测试于ICCV2023挑战赛(SubT_MRS_Final_Challenge_UGV1)。
  • 更多更新,请查阅项目源码。

应用场景

CT-LIO广泛适用于自动驾驶车辆、无人机、机器人等领域,尤其在以下场景表现出色:

  1. 在城市街道上的自动驾驶汽车导航。
  2. 复杂室内环境中的服务机器人定位。
  3. 地下矿井或隧道勘探中的无人车操作。
  4. 高速旋转或剧烈动态变化的情况。

技术特性

  1. 连续时间Icp (ct-icp):提供更平滑的轨迹估计,减少因离散采样导致的误差。
  2. ESKF融合(loose couple):将LiDAR信息与IMU数据高效结合,提高整体稳定性。
  3. 自动和分析导数:通过这两种方式实现ct-icp,适应不同需求。
  4. 退化检测:当系统性能下降时,能够快速识别并采取补偿措施。

安装与运行

CT-LIO依赖Ubuntu和ROS环境。安装PCL和Eigen后,通过git克隆仓库并catkin_make进行编译。为了直接运行示例数据,您可以修改launch文件和应用程序代码,然后播放包含LiDAR和IMU数据的rosbag文件。

示例数据

项目提供了Robosense RS16在狭窄楼梯环境的数据集,展示了CT-LIO在处理复杂场景时的能力。只需下载数据并按照说明运行,即可观察到清晰的定位效果。

Robosense 16 Staircase

性能评估

CT-LIO相比于其他算法,在多种场景下展现出更高的精度和稳定性,包括与LIO-SAM的对比实验和高速行走的模拟。

CT-LIO的卓越性能和广泛的适用性使其成为实时定位和建图应用的理想选择。立即尝试这个开源项目,开启你的精准导航之旅!

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缪昱锨Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值