长读段差异基因表达分析流程最佳实践
1. 项目介绍
本项目是牛津纳米孔技术公司开发的一个用于长读段数据差异基因表达(DGE)和差异转录本使用(DTU)分析的自动化流程。该流程基于多个生物信息学工具,包括snakemake
、minimap2
、salmon
、edgeR
、DEXSeq
和stageR
,能够帮助研究人员从长读段测序数据中自动化地得到差异表达基因和转录本的信息。
2. 项目快速启动
首先,你需要克隆这个仓库到本地环境:
git clone https://github.com/nanoporetech/pipeline-transcriptome-de.git
接着,根据你的数据编辑config.yml
文件,设置输入的数据集和参数。
配置完成后,执行以下命令来启动分析流程:
snakemake --use-conda -j <num_cores> all
其中<num_cores>
应该被替换为你希望使用的CPU核心数。
3. 应用案例和最佳实践
输入数据
在config.yml
文件中,你需要指定以下参数:
transcriptome
:输入的转录组。annotation
:输入的GFF格式注释文件。control_samples
:一个包含对照样本名称和fastq文件路径的字典。treated_samples
:一个包含处理样本名称和fastq文件路径的字典。
输出数据
流程运行后,会在以下目录中生成输出文件:
alignments/*.bam
:未排序的转录组比对结果。alignments_sorted/*.bam
:排序和索引的转录组比对结果。counts
:由salmon
生成的计数文件。merged/all_counts.tsv
:包含所有样本的转录本计数表。de_analysis/
:包含差异表达分析的各个结果文件。
工作流程
确保你已经安装了miniconda
,然后按照以下步骤运行:
- 克隆项目。
- 编辑配置文件。
- 运行
snakemake
命令。
依赖管理
本项目使用conda
来管理依赖,确保安装了必要的生物信息学工具。
4. 典型生态项目
本项目是一个典型的生态项目,它通过整合多个开源工具来提升生物学研究的效率。类似的项目还包括:
RNAseq workflow
:用于RNA序列分析的流程。GWAS pipeline
:用于全基因组关联分析的流程。
以上就是长读段差异基因表达分析流程的最佳实践方式,希望能够帮助到你。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考