长读段差异基因表达分析流程最佳实践

长读段差异基因表达分析流程最佳实践

pipeline-transcriptome-de Pipeline for differential gene expression (DGE) and differential transcript usage (DTU) analysis using long reads pipeline-transcriptome-de 项目地址: https://gitcode.com/gh_mirrors/pi/pipeline-transcriptome-de

1. 项目介绍

本项目是牛津纳米孔技术公司开发的一个用于长读段数据差异基因表达(DGE)和差异转录本使用(DTU)分析的自动化流程。该流程基于多个生物信息学工具,包括snakemakeminimap2salmonedgeRDEXSeqstageR,能够帮助研究人员从长读段测序数据中自动化地得到差异表达基因和转录本的信息。

2. 项目快速启动

首先,你需要克隆这个仓库到本地环境:

git clone https://github.com/nanoporetech/pipeline-transcriptome-de.git

接着,根据你的数据编辑config.yml文件,设置输入的数据集和参数。

配置完成后,执行以下命令来启动分析流程:

snakemake --use-conda -j <num_cores> all

其中<num_cores>应该被替换为你希望使用的CPU核心数。

3. 应用案例和最佳实践

输入数据

config.yml文件中,你需要指定以下参数:

  • transcriptome:输入的转录组。
  • annotation:输入的GFF格式注释文件。
  • control_samples:一个包含对照样本名称和fastq文件路径的字典。
  • treated_samples:一个包含处理样本名称和fastq文件路径的字典。

输出数据

流程运行后,会在以下目录中生成输出文件:

  • alignments/*.bam:未排序的转录组比对结果。
  • alignments_sorted/*.bam:排序和索引的转录组比对结果。
  • counts:由salmon生成的计数文件。
  • merged/all_counts.tsv:包含所有样本的转录本计数表。
  • de_analysis/:包含差异表达分析的各个结果文件。

工作流程

确保你已经安装了miniconda,然后按照以下步骤运行:

  1. 克隆项目。
  2. 编辑配置文件。
  3. 运行snakemake命令。

依赖管理

本项目使用conda来管理依赖,确保安装了必要的生物信息学工具。

4. 典型生态项目

本项目是一个典型的生态项目,它通过整合多个开源工具来提升生物学研究的效率。类似的项目还包括:

  • RNAseq workflow:用于RNA序列分析的流程。
  • GWAS pipeline:用于全基因组关联分析的流程。

以上就是长读段差异基因表达分析流程的最佳实践方式,希望能够帮助到你。

pipeline-transcriptome-de Pipeline for differential gene expression (DGE) and differential transcript usage (DTU) analysis using long reads pipeline-transcriptome-de 项目地址: https://gitcode.com/gh_mirrors/pi/pipeline-transcriptome-de

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缪昱锨Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值