SPD-Conv: 一种新型CNN架构的开源项目

SPD-Conv: 一种新型CNN架构的开源项目

SPD-Conv Code for ECML PKDD 2022 paper: No More Strided Convolutions or Pooling: A Novel CNN Architecture for Low-Resolution Images and Small Objects SPD-Conv 项目地址: https://gitcode.com/gh_mirrors/sp/SPD-Conv

项目基础介绍和主要编程语言

SPD-Conv 是一个开源的深度学习项目,主要用于处理低分辨率图像和小物体。该项目的主要编程语言是 Python,并且依赖于 PyTorch 框架进行深度学习模型的构建和训练。

项目核心功能

SPD-Conv 的核心功能是提出了一种新的卷积神经网络(CNN)架构,称为 SPD-Conv。这种架构通过替换传统的步长卷积和池化层,使用空间到深度(Space-to-Depth, SPD)层和非步长卷积层,从而在处理低分辨率图像和小物体时能够更好地保留细节和信息。SPD-Conv 可以应用于大多数现有的 CNN 架构,显著提升模型在处理低分辨率图像和小物体时的性能。

项目最近更新的功能

SPD-Conv 项目最近更新的功能包括:

  1. YOLOv5-SPD 模型:在 YOLOv5 的基础上引入了 SPD-Conv 模块,显著提升了模型在 COCO-2017 数据集上的检测性能,特别是在处理小物体时表现尤为突出。
  2. ResNet18-SPD 和 ResNet50-SPD 模型:在 ResNet 系列模型中应用 SPD-Conv,提升了模型在 Tiny ImageNet 和 CIFAR-10 数据集上的分类准确率。
  3. 详细的评估脚本:提供了详细的评估脚本,用户可以方便地评估预训练模型的性能,并进行进一步的模型训练和优化。

通过这些更新,SPD-Conv 项目不仅提供了新的 CNN 架构,还为用户提供了丰富的实验和评估工具,帮助用户更好地理解和应用这一新技术。

SPD-Conv Code for ECML PKDD 2022 paper: No More Strided Convolutions or Pooling: A Novel CNN Architecture for Low-Resolution Images and Small Objects SPD-Conv 项目地址: https://gitcode.com/gh_mirrors/sp/SPD-Conv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贡焰子Una

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值