【机器人学】机械臂逆动力学的牛顿欧拉方法(MATLAB版)

本文的主要内容是:
(1)在MATLAB中编写了机械臂动力学算法—牛顿欧拉方法,并且加入了电机转子的惯量。
(2)和MATLAB 机器人工具箱的RNE函数进行了对比,发现了RNE函数的一个特点:RNE函数虽然可以加入电机的惯量,但是只能附加一部分电机的惯量力矩,没有计算全面,可能是考虑到电机的设置位置因人而异,不具有通用性。

通过设置motor_position=[1 1 1 1 1]将电机都设置在基座上(连杆1),这样可以看出使用该函数和rne函数求得的结果是一致的。但是如果电机设置不同,计算结果是不同的,这是因为rne函数忽略了两项:(1)在计算关节处力矩的时候,忽略了电机转子转动引起的力矩,注意代码中的link.njm;(2)在计算电机力矩的时候,忽略了电机转子的所在连杆的角加速度项,注意代码中的link.wmd。所以rne函数忽略的这两项会造成所求的力矩值偏小。
以下是m文件。
下段是example.m 需运行该脚本

clc
clear
robot_model;%机器人建模
q=[0 0 1 1 1];%某一瞬时的关节的角度
qd=[0 1 1 2 1];%某一瞬时的关节的角速度
qdd=[0 0 2 1 1];%某一瞬时的关节的角加速度
motor_position=[1 1 1 1 1];%若包含参数motor_position,表示考虑电机转子惯量,驱动连杆i的电机安装在第motor_position(i)个连杆上
%taum:计算得到电机的力矩;
%L:结构体,包含计算过程中的连杆的各种参数,具体看m文件里
[taum,L]=cal_rne(ZRobot,q,qd,qdd,motor_position);%考虑电机转子惯量
%taum:计算得到电机的力矩;
%L:结构体,包含计算过程中的连杆的各种参数,具体看m文件
% [taum,L]=cal_rne(ZRobot,q,qd,qdd); %不考虑电机转子惯量
taum
ZRobot.rne(q,qd,qdd)

robot_model.m文件:

%机械臂建模
%暂且只支持改进的DH参数
L1=Link([0,0,0,0,1],'modified');
L2=Link([0,0,0,0,1],'modified');
L3=Link([0,0,0.5,0,0],'modified');
L4=Link([0,-0.01,1,0,0],'modified');
L5=Link([0,0,1,0,0],'modified');
L1.qlim=[0,0];
L2.qlim=[0,0.5];
L3.qlim=[-pi/2,pi/2];
L4.qlim=[-pi,pi/2];
L5.qlim=[-2*pi,2*pi];

L1.I=[0,0,0,0,0,0]; 
L2.I=[0,0,1,0,0,0];
L3.I=[0,0,1,0,0,0];
L4.I=[0,0,1,0,0,0];
L5.I=[0,0,1,0,0,0];


L1.m=0;
L2.m=1;
L3.m=1;
L4.m=1;
L5.m=1;
L1.r=[0;0;0];
L2.r=[0;0;0];
L3.r=[0;0;0];
L4.r=[0;0;0];
L5.r=[0;0;0];
L2.G=2;
L3.G=5;
L4.G=4;
L5.G=4;
L2.Jm=1;
L3.Jm=0.04;
L4.Jm=0.04;
L5.Jm=0.04;
ZRobot=SerialLink([L1,L2,L3,L4,L5]);


cal_rne.m文件

function [rne_tau,link]=cal_rne(robot,neq,neqd,neqdd,motor_position)
if nargin==5
    [rne_tau,link]=cal_rne_m(robot,neq,neqd,neqdd,motor_position);
elseif nargin==4
    [rne_tau,link]=cal_rne_nom(robot,neq,neqd,neqdd);
end
end
%考虑电机转子
function [rne_tau,link]=cal_rne_m(robot,neq,neqd,neqdd,motor_position)
neq_temp.q=neq;%关节角度,相对于上一个连杆
neq_temp.qd=neqd;%关节角速度,相对于上一个连杆
neq_temp.qdd=neqdd;%关节角加速度,相对于上一个连杆
%link初始化,link(1)表示机械臂的基座
link.w=zeros(3,1);%连杆角速度,相对于地球坐标系
link.wd=zeros(3,1);%连杆角加速度,相对于地球坐标系
link.wmd=zeros(3,1);%驱动该连杆的电机转子的角加速度,相对于地球坐标系
link.p=zeros(3,1);%连杆坐标系原点的位置,连杆坐标系
% link.a=robot.gravity;
link.a=zeros(3,1);%连杆坐标系原点的线加速度,地球坐标系
link.ac=zeros(3,1);%连杆重心的线加速度,在地球坐标系
link.f=zeros(3,1);%连杆坐标系原点的受力,相对于连杆坐标系
link.tau=0;%连杆坐标系原点的力矩
link.taum=0;%驱动该连杆的电机的力矩
link.pc=zeros(3,1);%连杆的质心的位置,在连杆坐标系中
link.m=0;%连杆的质量
link.I=zeros(3,3);%连杆的惯量矩阵,相对于质心
link.F=zeros(3,1);%连杆的惯性力大小,连杆坐标系
link.N=zeros(3,1);%连杆的惯性力矩,连杆坐标系
link.nm=zeros(3,1);%安装在连杆i上的电机转子转动引起的关节i处的附加力矩
link.nj=zeros(3,1);%不考虑电机转动关节i处的力矩
link.njm=zeros(3,1);%link.nm+link.nj
link.Im=zeros(3,3);%电机转子惯量矩阵
link.G=0;%驱动连杆电机的减速比
link.zm=[0;0;1];%连杆i的电机旋转轴方向在连杆i坐标系的表示
link(2).a=robot.gravity;
z0=[0;0;1];%Z方向向量
link_num_temp=size(robot.links);%连杆数量
link_num=link_num_temp(2);%连杆数量
T(1:4,1:4,1)=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];%T矩阵
%赋值减速比和电机转子的转动惯量
for i=2:link_num
    if isempty(robot.links(1,i).G)==0
        link(i).G=robot.links(1,i).G;
    else
        link(i).G=0;
    end
    if isempty(robot.links(1,i).Jm)==0
        link(i).Im=[0 0 0;0 0 0;0 0 robot.links(1,i).Jm];
    else
        link(i).Im=zeros(3,3);
    end
end
%计算T矩阵 根据DH参数不同和连杆的关节类型而不同
if robot.mdh==1 %如果是改进的DH参数
    for i=2:link_num
        if robot.links(1,i).sigma==1
            robot.links(1,i).d=neq_temp.q(i);
        else
            robot.links(1,i).theta=neq_temp.q(i);
        end
        T(1:4,1:4,i)=T(1:4,1:4,i-1)*[
            cos(robot.links(1,i).theta),-sin(robot.links(1,i).theta),0,robot.links(1,i).a;
            sin(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),cos(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),-sin(robot.links(1,i).alpha),-sin(robot.links(1,i).alpha)*robot.links(1,i).d;
            sin(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),cos(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),cos(robot.links(1,i).alpha),cos(robot.links(1,i).alpha)*robot.links(1,i).d;
            0,0,0,1];
        link(i).p=T(1:3,4,i);
    end
else%如果是标准的DH参数 
    for i=2:link_num
        if robot.links(1,i).sigma==1
            robot.links(1,i).d=neq_temp.q(i);
        else
            robot.links(1,i).theta=neq_temp.q(i);
        end
        T(1:4,1:4,i)=T(1:4,1:4,i-1)*[
            cos(robot.links(1,i).theta),-sin(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),sin(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),robot.links(1,i).a*cos(robot.links(1,i).theta);
            sin(robot.links(1,i).theta),cos(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),-cos(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),robot.links(1,i).a*sin(robot.links(1,i).theta);
            0,sin(robot.links(1,i).alpha),cos(robot.links(1,i).alpha),robot.links(1,i).d;
            0,0,0,1];
        link(i).p=T(1:3,4,i);
    end
end
%求连杆坐标系原点的线速度、连杆坐标系原点的线加速度、连杆的角速度、连杆的角加速度、质心的线加速度、电机转子的角加速度
for i=2:1:link_num %从连杆2开始,
    R=T(1:3,1:3,i)'*T(1:3,1:3,i-1);% i-1在i中的旋转矩阵 R 上i下i-1
    P=T(1:3,1:3,i-1)'*(T(1:3,4,i)-T(1:3,4,i-1));% ;i坐标系原点在i-1坐标系中的位置 P上i-1下i
    link(i).pc=robot.links(1,i).r';
    link(i).I=robot.links(1,i).I;
    link(i).m=robot.links(1,i).m;
    if robot.links(i).sigma==1  %若为移动关节
        link(i).w=R*link(i-1).w;%连杆的角速度
        link(i).wd=R*link(i-1).w;%连杆的角加速度
        a_temp1=R*(cross(link(i-1).wd,P)+cross(link(i-1).w,cross(link(i-1).w,P))+link(i-1).a);
        a_temp2=2*cross(link(i).w,(neq_temp.qd(i)*z0));
        a_temp3=neq_temp.qdd(i)*z0;
        link(i).a=a_temp1+a_temp2+a_temp3;%连杆坐标系原点的线速度
    else  %若为旋转关节
        link(i).w=R*(link(i-1).w+neq_temp.qd(i)*z0);%连杆的角速度
        link(i).wd=R*link(i-1).wd+R*cross(neq_temp.qd(i)*link(i-1).w,z0)+neq_temp.qdd(i)*z0;%连杆的角加速度
        link(i).wd;
        a_temp1_=R*cross(link(i-1).wd,P);
        a_temp2_=R*(cross(link(i-1).w,cross(link(i-1).w,P)));
        a_temp3_=R*(link(i-1).a);
        link(i).a=a_temp1_+a_temp2_+a_temp3_;%连杆坐标系原点的线加速度
    end
    if i==2
        link(i).a=robot.gravity;
    end
    link(i).ac=cross(link(i).wd,link(i).pc)+cross(link(i).w,cross(link(i).w,link(i).pc))+link(i).a;%连杆i的质心的线加速度
    link(i).F=link(i).m*link(i).ac;
    link(i).N=link(i).I*link(i).wd+cross(link(i).wd,link(i).I*link(i).w);
    link(i).zm=[0;0;1];%电机转子旋转轴的方向
    link(i).wmd=link(motor_position(i)).wd+link(i).G*neq_temp.qdd(i)*link(i).zm+link(i).G*neq_temp.qd(i)*cross(link(motor_position(i)).w,link(i).zm); %电机转子i的角加速度 电机转子在连杆motor_position(i)上
%     link(i).wmd=link(i).G*neq_temp.qdd(i)*link(i).zm+link(i).G*neq_temp.qd(i)*cross(link(i-1).w,link(i).zm); %电机转子i相对于i-1的角加速度 电机转子在nmi连杆上   rne函数的算法,忽略了 link(motor_position(i)).wd 
end
fe=[0;0;0];
ne=[0;0;0];
%计算运动学参数R和P
for i=link_num:-1:2
    if i==link_num %计算运动学参数
        RE=[1 0 0;0 1 0;0 0 1];
        PE=[0;0;0];
    else
        R=T(1:3,1:3,i)'*T(1:3,1:3,i+1);% i+1在i中的旋转矩阵
        P=T(1:3,1:3,i)'*(T(1:3,4,i+1)-T(1:3,4,i));% ;i+1坐标系原点在i坐标系中的位置
    end
end
%计算连杆关节的力矩和关节的力矩
for i=link_num:-1:2
    if i==link_num %计算运动学参数
        RE=[1 0 0;0 1 0;0 0 1];
        PE=[0;0;0];
    else
        R=T(1:3,1:3,i)'*T(1:3,1:3,i+1);% i+1在i中的旋转矩阵
        P=T(1:3,1:3,i)'*(T(1:3,4,i+1)-T(1:3,4,i));% ;i+1坐标系原点在i坐标系中的位置
    end
    %计算关节处的力矩
    if i==link_num %若为末端杆 计算关节i处的力和力矩
        link(i).f=R*fe+link(i).F;
        link(i).nm=[0;0;0];%末端杆上没有电机转子,故力矩为0
        link(i).nj=link(i).N+RE'*ne+cross(link(i).pc,link(i).F)+cross(PE,R*fe);
        link(i).njm=link(i).nj+link(i).nm;%末端关节处的力矩
    else%若不是末端杆 计算关节i处的力和力矩
        link(i).f=R*link(i+1).f+link(i).F;%计算施加到关节上的力
        link(i).nm=(link(motor_position(i)).G*neq_temp.qdd(motor_position(i)))*link(motor_position(i)).Im*link(motor_position(i)).zm+...
                link(motor_position(i)).G*neq_temp.qd(motor_position(i))*link(motor_position(i)).Im*cross(link(i).w,link(motor_position(i)).zm);     %在连杆i的安装的电机转子转动造成连杆i的力矩附加量
            link(i).nj=link(i).N+R*link(i+1).njm+cross(link(i).pc,link(i).F)+cross(P,R*link(i+1).f);%连杆的惯性力和连杆惯性力矩对关节i处的造成的力矩值
%             link(i).njm=link(i).nj+link(i).nm;%关节i处的力矩
            link(i).njm=link(i).nj;%rne函数的关节i处的力矩算法,其忽略了link.nm
    end 
    %计算电机上的力矩
    if robot.links(1,i).sigma==1 %若为移动关节
        link(i).tau=link(i).f'*z0;
        link(i).mt=link(i).G*link(i).Im(3,3)*(link(i).wmd)'*link(i).zm;%电机i的惯量力矩引起的力矩附加值;
        link(i).taum=link(i).f'*z0+link(i).mt;
    else %若为旋转关节
        link(i).tau=link(i).njm'*z0; %不考虑电机的惯量力矩
        link(i).mt=link(i).G*link(i).Im(3,3)*(link(i).wmd)'*link(i).zm;%电机i的惯量力矩引起的力矩附加值
        link(i).taum=link(i).njm'*z0+link(i).mt;%驱动连杆i的电机所需的力矩
    end
    rne_tau(i)=link(i).taum;
end
end
% 不考虑电机转子
function [rne_tau,link]=cal_rne_nom(robot,neq,neqd,neqdd)
neq_temp.q=neq;%关节角度,相对于上一个连杆
neq_temp.qd=neqd;%关节角速度,相对于上一个连杆
neq_temp.qdd=neqdd;%关节角加速度,相对于上一个连杆
%link(1)表示机械臂的基座
link.w=zeros(3,1);%连杆角速度,相对于地球坐标系
link.wd=zeros(3,1);%连杆角加速度,相对于地球坐标系
link.p=zeros(3,1);%连杆坐标系原点的位置,连杆坐标系
% link.a=robot.gravity;
link.a=zeros(3,1);%连杆坐标系原点的线加速度,地球坐标系
link.ac=zeros(3,1);%连杆重心的线加速度,在地球坐标系
link.f=zeros(3,1);%连杆坐标系原点的受力,相对于连杆坐标系
link.tau=0;%连杆坐标系原点的力矩
link.pc=zeros(3,1);%连杆的质心的位置,在连杆坐标系中
link.m=0;%连杆的质量
link.I=zeros(3,3);%连杆的惯量矩阵,相对于质心
link.F=zeros(3,1);%连杆的惯性力大小,连杆坐标系
link.N=zeros(3,1);%连杆的惯性力矩,连杆坐标系
link.nj=zeros(3,1);%关节处的力矩
z0=[0;0;1];%Z方向向量
link_num_temp=size(robot.links);%连杆数量
link_num=link_num_temp(2);%连杆数量
T(1:4,1:4,1)=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];%T矩阵
%计算T矩阵 根据DH参数不同和连杆的关节类型而不同
if robot.mdh==1 %如果是改进的DH参数
    for i=2:link_num
        if robot.links(1,i).sigma==1
            robot.links(1,i).d=neq_temp.q(i);
        else
            robot.links(1,i).theta=neq_temp.q(i);
        end
        T(1:4,1:4,i)=T(1:4,1:4,i-1)*[
            cos(robot.links(1,i).theta),-sin(robot.links(1,i).theta),0,robot.links(1,i).a;
            sin(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),cos(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),-sin(robot.links(1,i).alpha),-sin(robot.links(1,i).alpha)*robot.links(1,i).d;
            sin(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),cos(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),cos(robot.links(1,i).alpha),cos(robot.links(1,i).alpha)*robot.links(1,i).d;
            0,0,0,1];
        link(i).p=T(1:3,4,i);
    end
else%如果是标准的DH参数
    for i=2:link_num
        if robot.links(1,i).sigma==1
            robot.links(1,i).d=neq_temp.q(i);
        else
            robot.links(1,i).theta=neq_temp.q(i);
        end
        T(1:4,1:4,i)=T(1:4,1:4,i-1)*[
            cos(robot.links(1,i).theta),-sin(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),sin(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),robot.links(1,i).a*cos(robot.links(1,i).theta);
            sin(robot.links(1,i).theta),cos(robot.links(1,i).theta)*cos(robot.links(1,i).alpha),-cos(robot.links(1,i).theta)*sin(robot.links(1,i).alpha),robot.links(1,i).a*sin(robot.links(1,i).theta);
            0,sin(robot.links(1,i).alpha),cos(robot.links(1,i).alpha),robot.links(1,i).d;
            0,0,0,1];
        link(i).p=T(1:3,4,i);
    end
end
%求连杆坐标系原点的线速度、连杆坐标系原点的线加速度、连杆的角速度、连杆的角加速度、质心的线加速度、电机转子的角加速度
for i=2:1:link_num %从序号2开始,其实
    R=T(1:3,1:3,i)'*T(1:3,1:3,i-1);% i-1在i中的旋转矩阵 R 上i下i-1
    P=T(1:3,1:3,i-1)'*(T(1:3,4,i)-T(1:3,4,i-1));% ;i坐标系原点在i-1坐标系中的位置 P上i-1下i
    link(i).pc=robot.links(1,i).r';
    link(i).I=robot.links(1,i).I;
    link(i).m=robot.links(1,i).m;
    if robot.links(i).sigma==1  %若为移动关节
        link(i).w=R*link(i-1).w;%连杆的角速度
        link(i).wd=R*link(i-1).w;%连杆的角加速度
        a_temp1=R*(cross(link(i-1).wd,P)+cross(link(i-1).w,cross(link(i-1).w,P))+link(i-1).a);
        a_temp2=2*cross(link(i).w,(neq_temp.qd(i)*z0));
        a_temp3=neq_temp.qdd(i)*z0;
        link(i).a=a_temp1+a_temp2+a_temp3;%连杆坐标系原点的线速度
    else  %若为旋转关节
        link(i).w=R*(link(i-1).w+neq_temp.qd(i)*z0);%连杆的角速度
        link(i).wd=R*link(i-1).wd+R*cross(neq_temp.qd(i)*link(i-1).w,z0)+neq_temp.qdd(i)*z0;%连杆的角加速度
        a_temp1_=R*cross(link(i-1).wd,P);
        a_temp2_=R*(cross(link(i-1).w,cross(link(i-1).w,P)));
        a_temp3_=R*(link(i-1).a);
        link(i).a=a_temp1_+a_temp2_+a_temp3_;%连杆坐标系原点的线加速度
    end
    link(i).ac=cross(link(i).wd,link(i).pc)+cross(link(i).w,cross(link(i).w,link(i).pc))+link(i).a;%连杆i的质心的线加速度
    link(i).F=link(i).m*link(i).ac;
    link(i).N=link(i).I*link(i).wd+cross(link(i).wd,link(i).I*link(i).w);
end
fe=[0;0;0];
ne=[0;0;0];
%计算运动学参数R和P
for i=link_num:-1:2
    if i==link_num %计算运动学参数
        RE=[1 0 0;0 1 0;0 0 1];
        PE=[0;0;0];
    else
        R=T(1:3,1:3,i)'*T(1:3,1:3,i+1);% i+1在i中的旋转矩阵
        P=T(1:3,1:3,i)'*(T(1:3,4,i+1)-T(1:3,4,i));% ;i+1坐标系原点在i坐标系中的位置
    end
end
%计算连杆关节的力矩和关节的力矩
for i=link_num:-1:2
    if i==link_num %计算运动学参数
        RE=[1 0 0;0 1 0;0 0 1];
        PE=[0;0;0];
    else
        R=T(1:3,1:3,i)'*T(1:3,1:3,i+1);% i+1在i中的旋转矩阵
        P=T(1:3,1:3,i)'*(T(1:3,4,i+1)-T(1:3,4,i));% ;i+1坐标系原点在i坐标系中的位置
    end
    %计算关节处的力矩
    if i==link_num %若为末端杆 计算关节i处的力和力矩
        link(i).f=R*fe+link(i).F;
        link(i).nj=link(i).N+RE'*ne+cross(link(i).pc,link(i).F)+cross(PE,R*fe);%不考虑关节处的力矩
    else%若不是末端杆 计算关节i处的力和力矩
        link(i).f=R*link(i+1).f+link(i).F;%计算施加到关节上的力
        link(i).nj=link(i).N+R*link(i+1).nj+cross(link(i).pc,link(i).F)+cross(P,R*link(i+1).f);%不考虑电机转子转动的关节i处的力矩
    end
    if robot.links(1,i).sigma==1 %若为移动关节
        link(i).tau=link(i).f'*z0;
    else %若为旋转关节
        link(i).tau=link(i).nj'*z0; %不考虑电机的惯量力矩
    end
    rne_tau(i)=link(i).tau;
end
end





机械臂动力学方程可以通过牛顿欧拉法求解。下面是MATLAB中实现机械臂牛顿欧拉动力学的代码示例: ```matlab function [tau] = NE(q, qd, qdd, robot) % 机械臂牛顿欧拉动力学算法 % 输入:q-关节角度,qd-关节角速度,qdd-关节角加速度,robot-机械臂模型 % 输出:tau-关节力矩 n = robot.n; % 关节数量 g = [0; 0; -9.8]; % 重力加速度 % 初始化 f = zeros(3, n+1); n_hat = zeros(3, n+1); v = zeros(6, n+1); a = zeros(6, n+1); tau = zeros(n, 1); % 前向递推 for i = 1:n % 计算连杆的运动状态 T = robot.links(i).A(q(i)); v(:, i+1) = T * [v(1:3, i); qd(i); qd(i); qd(i+1)]; a(:, i+1) = T * [a(1:3, i); qdd(i); qdd(i); qdd(i+1)] + ... [cross(v(4:6, i+1), v(4:6, i+1)); cross(v(4:6, i+1), a(1:3, i)) + cross(v(1:3, i+1), v(4:6, i+1)); ... cross(v(4:6, i+1), a(4:6, i)) + cross(v(1:3, i+1), v(4:6, i+1)) + T * [0; 0; robot.links(i).m * g(3)]]; % 计算连杆的惯性力和惯性矩 f(:, i+1) = robot.links(i).m * a(1:3, i+1); n_hat(:, i+1) = robot.links(i).I * a(4:6, i+1) + cross(v(4:6, i+1), robot.links(i).I * v(4:6, i+1)); end % 后向递推 for i = n:-1:1 % 计算关节力矩 tau(i) = n_hat(:, i+1)' * robot.links(i).z + f(:, i+1)' * cross(v(4:6, i+1), robot.links(i).z); for j = i+1:n tau(i) = tau(i) + n_hat(:, j+1)' * robot.links(j).R * robot.links(i).z + f(:, j+1)' * robot.links(j).R * cross(v(4:6, j+1), robot.links(i).z); end end end ``` 其中,机械臂模型可以通过Robotics Toolbox for MATLAB中的SerialLink类来定义。在使用该函数时,需要传入机械臂的关节角度、关节角速度、关节角加速度和机械臂模型,即可得到机械臂的关节力矩。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值