【机器人学】《现代机器人学》学习笔记:(1)逆运动学的数值求解(C++版)

在过去的好几个月的时间,因为工作需要,把《现代机器人学》这本书认真地学习了一下,个人感觉这本书的阅读价值极高,可显著提高机器人学算法,数学能力。

这本教材是提供了所讲算法的官方的matlab代码(链接),另外也有人写了C++(链接)、python及其它版本。

出于学习机器人学算法C++编程的目的,我写了一个对上述提到的C++版本的函数库的测试算例,使用牛顿拉普森方法求解机械臂逆运动学解,代码链接:https://github.com/GProbot/modern-robot

算例说明:对一个两连杆机构求逆解

程序运行结果:

linux-gp@linuxgp-virtual-machine:~/modernrobotic$ ./robot_test 
Slist=
 0  0  0
 0  0  0
 1  1  1
-0 -0 -0
-0 -1 -2
-0 -0 -0
M = 
1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1
T = 
1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1

initial joint = 
     0
1.0472
     0
joint result = 
-4.33401e-08
      1.5708
     -1.5708
FKinSpace = 
           1 -4.33401e-08            0            1
 4.33401e-08            1            0            1
           0            0            1            0
           0            0            0            1
FKinSpace = T

 

<think>好的,我现在需要帮助用户找到关于MATLAB中机器人运动学逆实现方法或教程。首先,用户的问题是关于机器人逆运动学在MATLAB中的具体实现步骤和相关教程,我需要结合之前提供的引用内容来组织回答。 根据系统指令,我需要使用中文回答,结构清晰,分步骤说明,并确保LaTeX格式正确。同时,要生成相关问题,并在引用处添加标识。现在,我需要回忆用户提供的引用内容: 引用1提到工业机器人运动学与Matlab正逆算法,尤其是逆运动学P2和雅可比矩阵。引用2和3涉及六自由度机器人的逆方法,包括代数法和雅可比矩阵的应用,以及MATLAB代码的示例。引用3提到代数法是常见方法之一。 首先,我应该介绍MATLAB中逆的基本实现步骤,可能包括使用Robotics System Toolbox中的函数,如`inverseKinematics`对象,或者代数法的实现。接着,分步骤详细说明代数法的实现方法,比如建立DH参数、构建变换矩阵、使用解析方法求解关节角等。然后,可以提到雅可比矩阵的数值法,如引用1和2中提到的内容,说明如何利用雅可比矩阵进行迭代求解。 需要注意,在步骤中需要正确使用LaTeX公式,例如DH参数矩阵、变换矩阵等。例如,DH矩阵可以表示为: $$ T_i = \begin{pmatrix} \cos\theta_i & -\sin\theta_i \cos\alpha_i & \sin\theta_i \sin\alpha_i & a_i \cos\theta_i \\ \sin\theta_i & \cos\theta_i \cos\alpha_i & -\cos\theta_i \sin\alpha_i & a_i \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix} $$ 然后,需要提供MATLAB代码示例,比如使用代数法或工具箱函数的代码片段。例如,引用2提到的代码可能涉及构建DH参数,并调用相关函数计算逆。 此外,在教程资源部分,需要引用提供的链接,如引用1、2中的CSDN博客链接,以及MathWorks官方文档。例如,用户可以参考引用1中的工业机器人运动学与Matlab正逆算法学习笔记,或者引用2中的六自由度机器人相关文章。 最后,生成相关问题,例如关于代数法的优缺点、雅可比矩阵的应用,或者逆在具体机器人模型中的实现。 需要确保整个回答符合系统指令:行内公式用$...$,独立公式用$$...$$,正确的中文回答,结构清晰,分步骤,引用标识正确。同时,检查是否有遗漏的引用点,例如引用3提到代数法是常见方法,应当在步骤中提及,并在末尾添加[^3]。</think>### MATLAB中机器人运动学逆实现方法 #### 1. **核心实现步骤** **步骤1:建立机器人模型** 使用改进型D-H参数定义机器人连杆结构,例如六轴机器人的参数表: | 关节 | $\theta_i$ | $d_i$ | $a_i$ | $\alpha_i$ | |------|------------|-------|-------|------------| | 1 | $\theta_1$ | $d_1$ | $a_1$ | $\alpha_1$ | 通过MATLAB的`rigidBodyTree`对象构建模型: ```matlab robot = rigidBodyTree; % 添加各关节和连杆(示例) body1 = rigidBody('link1'); joint1 = rigidBodyJoint('j1', 'revolute'); % 设置D-H参数 setFixedTransform(joint1, dhparams(1,:), 'dh'); body1.Joint = joint1; robot.addBody(body1, 'base'); ``` **步骤2:正运动学验证** 计算末端位姿的齐次变换矩阵: $$ T_{06} = T_{01} \cdot T_{12} \cdot T_{23} \cdot T_{34} \cdot T_{45} \cdot T_{56} $$ 对应代码: ```matlab config = homeConfiguration(robot); tform = getTransform(robot, config, 'end_effector'); ``` **步骤3:逆算法选择** - **代数解析法**:通过几何关系推导闭合(适合6自由度标准结构) 例如分离球腕结构,先求前三轴角度,再求后三轴欧拉角。 - **数值迭代法**:使用雅可比矩阵伪逆进行梯度下降(通用性强)[^1][^2] $$ \Delta\theta = J^\dagger \cdot \Delta x $$ **步骤4:MATLAB工具箱实现** 利用`inverseKinematics`对象设置误差容限和迭代次数: ```matlab ik = inverseKinematics('RigidBodyTree', robot); weights = [1 1 1 1 1 1]; initialGuess = config; [thetaSol, solInfo] = ik('end_effector', targetPose, weights, initialGuess); ``` #### 2. **关键代码示例(代数法)** 以PUMA560前三轴解析为例: ```matlab function theta = inverse_puma560(px, py, pz) % 计算θ1 theta1 = atan2(py, px); % 计算θ3(简化公式) D = (px^2 + py^2 + (pz - d1)^2 - a2^2 - a3^2) / (2*a2*a3); theta3 = atan2(D, sqrt(1 - D^2)); % 计算θ2 theta2 = atan2(pz - d1, sqrt(px^2 + py^2)) - atan2(a3*sin(theta3), a2 + a3*cos(theta3)); theta = [theta1, theta2, theta3]; end ``` #### 3. **推荐教程资源** 1. **MathWorks官方文档** - [Inverse Kinematics Algorithms](https://www.mathworks.com/help/robotics/ug/inverse-kinematics-algorithms.html) - 包含`inverseKinematics`类的参数说明与案例 2. **CSDN博客系列** - 【工业机器人运动学与Matlab正逆算法】详细推导了雅可比矩阵与数值实现 - 【六自由度机器人】提供完整的代数法代码与奇异位形分析[^2]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值