3D Gaussian Splatting技术原理

3DGaussianSplatting是一种处理3D数据的高级技术,通过高斯权重将点数据转化为连续体积表示,适用于医学成像和科学模拟数据的直观展示。其涉及数据表示、高斯权重分配、体素累加和体积渲染过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3D Gaussian Splatting 是一种用于体积渲染的技术,特别适用于科学和医学可视化。这种技术使得用户能够以一种直观的方式查看和分析三维数据集,如医学成像数据(MRI、CT扫描)或科学模拟数据。

技术原理

3D Gaussian Splatting基本上是一种将3D空间中的点数据转换成一个连续的体积数据表示的方法。它涉及到以下几个核心步骤:

1. 数据表示

在3D Gaussian Splatting中,每个数据点不仅表示一个具体的空间位置,还包含与该点相关的属性(如密度、颜色、温度等)。这些数据点被视为携带属性信息的样本。

2. 高斯权重

每个样本点被赋予一个高斯权重,这个权重定义了样本在空间中的影响范围和分布形状。高斯函数通常具有以下形式:

在这里插入图片描述

3. Splatting操作

每个点的属性通过其高斯权重“splat”到整个数据体积中。这意味着每个点的影响是通过高斯函数在其周围区域内分布的。具体地说,每个点的属性值乘以其高斯权重,然后将结果累加到它影响的体积单元(voxels)上。

4. 体积累积

累加阶段是将所有点的影响整合到一个单一的体积数据集中。对于体积数据集中的每个体素,所有影响到该体素的样本点的贡献被求和,得到最终的属性值。

5. 渲染

最后,渲染阶段将这个体积数据集转换为2D图像。这通常涉及到体积光线投射(volume ray casting)或其他体积渲染技术,其中模拟光线穿过体积数据集,按照物理模型计算光线与数据的相互作用(例如吸收和散射)。

数学表示

在这里插入图片描述

应用场景

3D Gaussian Splatting非常适合于那些数据点稀疏或分布不均匀的场景,如医学成像中对稀疏样本点的可视化,或者在科学研究中对模拟数据的分析和展示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鬼马行天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值