3D高斯泼溅(Gaussian Splatting)通俗解释

项目:3D Gaussian Splatting for Real-Time Radiance Field Rendering

代码:GitHub - graphdeco-inria/gaussian-splatting: Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"

功能:拍摄一段视频或多张图片,可以重建3维场景并能实时渲染。

优点:质量高、速度快。

缺点:占用存储和显存大。

原理:输入一组静态图片,由sfm得到稀疏点云,从稀疏点云初始化成3D高斯函数集合,由于3D到2D投影的模糊性,几何体可能会被错误地放置,因此需要训练优化得到更准确的3D高斯函数,最后使用GPU快速的光栅化器渲染结果。

训练步骤:

  • 使用可微分高斯光栅化将高斯光栅化为图像(稍后详细介绍)
  • 根据光栅化图像和地面真实图像之间的差异计算损失
  • 根据损失调整高斯参数
  • 应用自动致密化和修剪
### 3D Gaussian Splatting 技术解析 #### 工作原理 3D Gaussian Splatting 是一种用于表示和渲染复杂 3D 场景的技术,其核心在于利用高斯分布来描述场景中的点云数据。每个点不仅具有位置信息,还携带了颜色和其他属性的信息,并通过高斯函数建模这些特征的空间分布。 具体来说,该方法将每一个观测到的点视为一个带有协方差矩阵的多维正态分布中心[^1]。这种处理方式使得即使是在稀疏采样的情况下也能很好地近似物体表面细节。当需要从不同视角观察这个虚拟环境时,则通过对所有可见的高斯体素进行加权求和操作完成图像合成过程,其中权重取决于各高斯成分对于当前像素贡献度大小。 为了提高效率并支持实时应用,算法引入了一系列优化措施: - **快速可微光栅化**:允许高效计算每帧所需绘制哪些部分及其对应的颜色值; - **α-混合(Alpha Blending)**:解决透明效果呈现问题; - **交叉优化**:同时调整多个参数以获得最佳视觉质量的同时保持较低计算成本; - **自适应控制**:动态改变分辨率或其他设置以便更好地匹配硬件性能特点或特定任务需求[^2]。 #### 应用场景 这项技术因其灵活性和高性能而广泛应用于以下几个领域: - **增强现实(AR)** 和 虚拟现实(VR)** :提供逼真的沉浸式体验,特别是在涉及大规模户外场景的情况下表现尤为出色; - **自动驾驶汽车感知系统**:帮助车辆更精确地理解和预测周围环境变化情况; - **机器人导航与地图构建(SLAM)**:实现更加鲁棒的地图创建及定位功能; - **影视特效制作**:为电影工业带来前所未有的创作自由度,能够轻松模拟烟雾、火焰等难以捕捉的效果; - **医学成像分析**:辅助医生进行手术规划或是疾病诊断等工作。 ```python import numpy as np from scipy.stats import multivariate_normal def render_gaussian_splatting(points, covariances, colors, camera_pose): """ 渲染给定的一组带色彩信息的3D高斯点 参数: points (list of tuples): 各个高斯点的位置坐标列表 [(x,y,z)] covariances (list of matrices): 对应于points中各个点位处的协方差矩阵列表 colors (list of tuples): RGB颜色向量列表[(r,g,b)] camera_pose (tuple): 当前摄像机姿态(x,y,z,qw,qx,qy,qz),最后四个分量代表四元数形式的方向 返回: rendered_image (numpy array): 最终生成的画面数组 """ # 假设这里实现了完整的光线追踪逻辑... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值