SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别
STF(Supervised Fine-Tuning)和RLHF(Reinforcement Learning from Human Feedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:
1. 方法概述
STF(监督微调):
- 定义:STF是指在已经预训练好的模型基础上,使用标注好的数据进一步训练模型,使其在特定任务上表现更好。
- 过程:通常涉及使用大量人工标注的数据,通过监督学习的方式微调模型参数。
- 应用:常用于分类、回归、翻译等任务。
RLHF(基于人类反馈的强化学习):
- 定义:RLHF结合了强化学习和人类反馈,用于优化模型,使其输出更符合人类的期望。
- 过程:模型生成输出后,人类评估这些输出,并根据反馈调整模型的奖励函数。然后通过强化学习算法(如PPO)优化模型。
- 应用:多用于对话系统、生成任务等需要高质量输出的场景。
2. 数据需求
STF:
- 数据类型:需要大量高质量的标注数据。
- 数据获取:通常通过人工标注或现有标注数据集。
RLHF:
- 数据类型:需要人类反馈数据,通常是对模型输出的评价。
- 数据获取:通过人类评审员对模型输出进行评价,生成反馈数据。
3. 优化目标
STF:
- 目标:最小化模型在标注数据上的损失函数,使模型在特定任务上表现更好。
- 评价指标:通常是准确率、损失值等传统监督学习指标。
RLHF:
- 目标:最大化模型在特定任务上的奖励函数,使输出更符合人类的期望。
- 评价指标:基于人类反馈的奖励值,可能包括满意度评分、任务完成率等。
4. 适用场景
STF:
- 适用场景:适用于有明确标注数据的任务,如图像分类、文本分类、机器翻译等。
- 优点:可以利用大量已有的标注数据,训练过程相对简单。
RLHF:
- 适用场景:适用于需要高质量生成输出的任务,如对话系统、文本生成等。
- 优点:可以通过人类反馈不断优化模型输出质量,适应性强。
5. 训练复杂度
STF:
- 复杂度:相对较低,主要依赖于标注数据和传统监督学习算法。
- 训练时间:取决于数据量和模型复杂度。
RLHF:
- 复杂度:相对较高,需要结合人类反馈和强化学习算法。
- 训练时间:通常较长,因为需要多次迭代和人类反馈评估。
总结
STF和RLHF各有优劣,选择哪种方法取决于具体应用场景和目标。STF适用于有明确标注数据的任务,而RLHF则更适合需要高质量生成输出的任务。
STF数据长啥样
STF(监督微调)中的数据通常是结构化的标注数据,用于特定任务的模型训练。数据格式因任务而异,但一般都包括输入和对应的正确输出(标签)。以下是一些常见任务及其数据格式示例:
1. 文本分类
任务:将文本分配到预定义的类别。
数据格式:
{
"text": "The movie was fantastic and full of excitement.",
"label": "positive"
}
2. 机器翻译
任务:将文本从一种语言翻译到另一种语言。
数据格式:
{
"source_text": "Hello, how are you?",
"target_text": "Bonjour, comment ça va?"
}
3. 情感分析
任务:判断文本的情感倾向。
数据格式:
{
"text": "I am so happy with the service!",
"label": "positive"
}
4. 命名实体识别(NER)
任务:识别文本中的命名实体并标注其类别。
数据格式:
{
"text": "Apple is looking at buying U.K. startup for $1 billion.",
"entities": [
{"start": 0, "end": 5, "label": "ORG"},
{"start": 27, "end": 30, "label": "LOC"},
{"start": 44, "end": 54, "label": "MONEY"}
]
}
5. 问答系统
任务:根据问题在给定文本中找到答案。
数据格式:
{
"context": "Albert Einstein was a theoretical physicist who developed the theory of relativity.",
"question": "Who developed the theory of relativity?",
"answer": "Albert Einstein"
}
6. 文本生成
任务:根据给定的提示生成文本。
数据格式:
{
"prompt": "Write a short story about a dragon.",
"completion": "Once upon a time, there was a dragon who loved to read books. Every day, it would visit the library in the enchanted forest..."
}
7. 图像分类(非文本任务示例)
任务:将图像分配到预定义的类别。
数据格式:
{
"image_path": "path/to/image.jpg",
"label": "cat"
}
数据收集和标注
- 数据收集:从各种来源收集原始数据,如文本、图像、音频等。
- 数据标注:人工或自动标注数据,生成输入-输出对。例如,文本分类任务中,标注员会为每个文本分配一个类别标签。
- 数据格式化:将标注好的数据转换为适合模型训练的格式,如JSON、CSV等。
数据使用
在监督微调过程中,这些标注数据用于训练模型,使其在特定任务上表现更好。具体步骤包括:
- 数据加载:将标注数据加载到训练环境中。
- 模型训练:使用标注数据训练模型,最小化损失函数(如交叉熵损失)。
- 模型评估:在验证数据集上评估模型性能,调整超参数。
- 模型微调:根据验证结果进一步微调模型,直到达到满意的性能。
例子总结
假设我们有一个情感分析任务,以下是一个完整的示例:
{
"text": "The product quality is amazing and I am very satisfied.",
"label": "positive"
}
通过这种标注数据,模型可以学习如何判断文本的情感倾向,进而在实际应用中准确分类新的文本数据。
RLHF的数据长啥样
RLHF(Reinforcement Learning from Human Feedback)中的数据主要由人类对模型输出的反馈组成。这些反馈数据通常包括以下几种形式:
1. 对比评估数据(Preference Data)
人类评审员会对比模型生成的多个输出,并选择他们认为更好的一个。这种数据格式通常如下:
{
"prompt": "Write a short story about a dragon.",
"outputs": [
{"text": "Once upon a time, there was a dragon who loved to read books.", "rating": 1},
{"text": "In a faraway land, a dragon guarded a hidden treasure.", "rating": 2}
],
"preferred_output": 1
}
2. 评分数据(Rating Data)
人类评审员对每个输出进行评分,评分可以是绝对的(例如1到5分)或相对的(例如比另一个输出好多少)。这种数据格式通常如下:
{
"prompt": "Explain the theory of relativity.",
"outputs": [
{"text": "The theory of relativity, developed by Einstein, explains how time and space are linked.", "rating": 4},
{"text": "Einstein's theory of relativity shows how gravity affects time and space.", "rating": 5}
]
}
3. 二元反馈数据(Binary Feedback)
人类评审员对每个输出进行简单的好/坏评价。这种数据格式通常如下:
{
"prompt": "Translate 'Hello, how are you?' to French.",
"output": "Bonjour, comment ça va?",
"feedback": "positive"
}
4. 排序数据(Ranking Data)
人类评审员对多个输出进行排序,按照从最好到最差的顺序排列。这种数据格式通常如下:
{
"prompt": "Generate a poem about the sea.",
"outputs": [
{"text": "The sea is vast and deep, a mystery to keep.", "rank": 1},
{"text": "Waves crash on the shore, a sound I adore.", "rank": 2},
{"text": "Blue waters stretch far, under the evening star.", "rank": 3}
]
}
5. 自由文本反馈(Free-text Feedback)
人类评审员提供详细的文本反馈,解释为什么他们喜欢或不喜欢某个输出。这种数据格式通常如下:
{
"prompt": "Describe a sunset.",
"output": "The sun sets over the horizon, painting the sky with hues of orange and pink.",
"feedback": "The description is vivid, but could use more detail about the colors and the overall atmosphere."
}
数据收集过程
- 生成初始输出:模型根据输入生成多个候选输出。
- 人类评估:人类评审员对这些候选输出进行评估,提供对比、评分、排序或自由文本反馈。
- 反馈数据存储:将评估结果存储为结构化数据,供后续训练使用。
数据使用
在训练过程中,这些反馈数据用于调整模型的奖励函数。通过强化学习算法(如PPO),模型学习如何生成更符合人类期望的输出。具体来说,模型会根据人类反馈调整策略,使得未来生成的输出能够获得更高的奖励。
例子总结
假设我们有一个对话生成任务,以下是一个完整的示例:
{
"prompt": "Tell me a joke.",
"outputs": [
{"text": "Why don't scientists trust atoms? Because they make up everything!", "rating": 5},
{"text": "Why did the chicken join a band? Because it had the drumsticks!", "rating": 4}
],
"preferred_output": 0,
"feedback": "Both jokes are funny, but the first one is more related to science, which I find more interesting."
}
通过这种反馈数据,模型可以逐步学习生成更符合人类偏好的对话内容。