视觉位置识别与多模态导航规划

文章探讨了视觉位置识别(VPR)在机器人导航中的重要性,特别是AnyLoc和SelaVPR两种方法,前者追求通用性和鲁棒性,后者通过轻量级适配器改善预训练模型的适应性。同时,提到了PixelNav的RGB导航技能,它以像素为目标,强化了导航的精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

        机器人感知决策是机器人移动的前提,机器人需要对周围环境实现理解,而周围环境通常由静态环境与动态环境构成。机器人在初始状态或者重启时需要确定当前所处的位置,然后根据用户的指令或意图,开展相应移动或抓取操作。通过视觉感知确定机器人所处位置,同时如何根据感知结果确定移动方向是重要的研究方向。视觉位置识别(VPR)主要是从标记的图像数据库中搜索最佳匹配,来粗略估计查询地点图像的位置,可以归结为数据库构建与查询的过程。主要的问题是环境中有部分是动态环境,因此很多算法均是在固定场景进行实验,缺乏泛化性,如何根据环境实现机器人导航也面临着挑战。

方法

视觉位置识别

1、AnyLoc: Towards Universal Visual Place Recognition

        AnyLoc旨在位置识别算法的通用性,包括任何地点(无缝地运行在任何环境中,包括空中、地下和水下),任何时间(对场景中的时间变化,如昼夜或季节变化,或对临时物体具有鲁棒性),以及跨任何视角(对视角变化具有鲁棒性,包括完全相反的视角。主要通过聚合从大规模预训练模型(基础模型)提取的每像素特征来实现这一目标,而无需进行任何训练或微调。

        主要采用自监督特征(如DINOv2)和无监督聚合方法(如VLAD和GeM),用来提取每个像素特征,相较于直接使用现成模型的每个图像特征,可以获得显著的性能提升。通过评估局部特征对应的鲁棒性来说明这种密集ViT特征在VPR中的适用性。选择数据库图像上的一个点,将其与查询图像

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值