双目立体视觉空间坐标精度分析

参考链接:https://zhuanlan.zhihu.com/p/362718946

本文主要参考链接博主的理论推导,并按照自己的理解作分析和修正

一、考虑问题:

  1. 双目立体视觉系统的精度由那些因素决定?

  2. X/Y/Z三个方向的精度都是一样的吗?如果不是一样,哪个方向精度更好呢?

最常见的情况下,双目立体视觉的最终输出是左相机坐标系下的XYZ坐标,本篇便以这三个分量为精度分析对象。

首先,做一些变量的定义:

b :基线长度,单位mm

f :焦距

x, y :像点坐标(以像主点为原点)

X, Y, Z :相机坐标系下的坐标,单位mm

d :视差

我们先看这三个分量的求解公式:

Z = b f d ,    X = Z f x ,    Y = Z f y Z = \frac{bf}{d},\ \ X = \frac{Z}{f}x,\ \ Y = \frac{Z}{f}y Z=dbf,  X=fZx,  Y=fZy

从公式可知,在硬件参数 b, f 固定的情况下, XYZ 的值和像点坐标值直接相关,XYZ 的精度实际上是像点精度下的空间偏差值,因此我们以像点精度为基本(最小)精度单位。

二、对博主的推导作修正

当变量定义如下

像素x代表的是尺寸大小,单位mm

焦距f代表物理尺寸,单位mm

视差d代表物理尺寸,单位mm

才能使用博主的推导公式,下面对Z方向的精度推导作解释。

假设像点 x,y 的精度(像素尺寸)为 s x ,   s y s_{x},\ s_{y} sx, sy ,视差 d 的精度为 s d s_{d} sd 。通常认为 x,y 的精度是相同的,即 s x = s y = s s_{x} = s_{y} = s sx=sy=s ,而视差的精度一般来说可以用公式

s d = s x 2 s_{d} = \frac{s_{x}}{\sqrt{2}} sd=2 sx

Z方向精度

首先对于 Z ,自变量是 d ,我们对 d 求偏导,可得

∂ Z ∂ d = − b f d 2 = − Z 2 b f \frac{\partial Z}{\partial d} = - \frac{bf}{d^{2}} = - \frac{Z^{2}}{bf} dZ=d2bf=bfZ2

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值