【USBL】USBL-DVL-INS组合原理

讲一下USBL与INS和DVL组合进行水下导航定位的原理,用文字和公式阐述一下

Underwater navigation using a combination of USBL (Ultra-Short BaseLine), INS (Inertial Navigation System), and DVL (Doppler Velocity Log) involves integrating data from these three systems to provide an accurate and reliable estimate of the position and orientation of a underwater vehicle.

使用USBL(超短基线)、INS(惯性导航系统)和DVL(多普勒速度日志)组合的水下导航涉及整合这三个系统的数据,以提供水下航行器位置和方位的准确可靠估计.

The USBL system provides an absolute position measurement by using acoustic signals to determine the range and bearing to a fixed underwater transponder. The INS system provides information about the vehicle’s orientation and velocity through the use of accelerometers and gyroscopes. The DVL system provides an estimate of the vehicle’s velocity relative to the water.

USBL系统通过使用声学信号确定固定水下转发器的距离和方位,提供绝对位置测量。INS系统通过使用加速计和陀螺仪提供有关车辆方向和速度的信息。DVL系统提供车辆相对于水的速度估计。

The data from these three systems is combined to estimate the vehicle’s position and orientation. This is typically done using a Kalman filter, which is a mathematical tool that combines the noisy and uncertain measurements from the various sensors to produce an optimal estimate of the true state of the system.

来自这三个系统的数据被组合以估计车辆的位置和方向。这通常是使用卡尔曼滤波器来完成的,卡尔曼滤波器是一种数学工具,它将来自各种传感器的噪声和不确定测量值相结合,以产生系统真实状态的最佳估计。

Mathematically, let x_usbl, x_ins, x_dvl denote the position and orientation estimates provided by the USBL, INS, and DVL systems respectively, and let z_usbl, z_ins, z_dvl denote the measurements from these systems. The Kalman filter can then be used to combine these measurements to produce an estimate of the true state of the system:

数学上,让x_usbl、x_ins、x_dvl分别表示usbl、ins和dvl系统提供的位置和方向估计,让z_usbl、z_ins、z_dvl表示这些系统的测量值。然后可以使用卡尔曼滤波器来组合这些测量值,以产生系统真实状态的估计:

x = x u s b l + K ( z u s b l − H x u s b l ) + x i n s + K ( z i n s − H x i n s ) + x d v l + K ( z d v l − H x d v l ) x = x_{usbl} + K (z_{usbl} - H x_{usbl}) + x_{ins} + K (z_{ins} - H x_{ins}) + x_{dvl} + K (z_{dvl }- H x_{dvl}) x=xusbl+K(zusblHxusbl)+xins+K(zinsHxins)+xdvl+K(zdvlHxdvl)
x = x_usbl + K (z_usbl - H x_usbl) + x_ins + K (z_ins - H x_ins) + x_dvl + K (z_dvl - H x_dvl)

where K is the Kalman gain and H is the measurement matrix that maps the state estimates to the measurements. The Kalman filter computes the optimal value of K at each time step by taking into account the uncertainties in the measurements and the system dynamics.

其中K是卡尔曼增益,H是将状态估计映射到测量的测量矩阵。卡尔曼滤波器通过考虑测量和系统动力学中的不确定性来计算每个时间步长的K的最佳值。

In this way, the Kalman filter provides a means of integrating data from multiple sources to produce an accurate and reliable estimate of the vehicle’s position and orientation, which is essential for successful underwater navigation.

通过这种方式,卡尔曼滤波器提供了一种整合来自多个来源的数据的方法,以产生对车辆位置和方位的准确和可靠的估计,这对于成功的水下导航至关重要。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值