不同类型的 LLM 有什么区别

LLM 有不同类型的模型,例如 Base 和 Instruct,他们有什么区别呢,Base 模型是基于原始语料进行训练的模型,生成结果时会持续生成,直到达到最大长度。而指令模型是经过问答数据集进行训练的,回答是会根据上下文判断来终止对话。本文将使用红 Qwen 2.5 分别展示两种模型的效果:

Qwen/Qwen2.5-1.5B

Qwen 2.5 Base 模型,结果指出输出:

## 下载模型
model_id = "./qwen2.5"
from modelscope import snapshot_download
snapshot_download("Qwen/Qwen2.5-1.5B", local_dir="./qwen2.5")
## 加载模型
from modelscope import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_id,  device_map="auto",  load_in_4bit=True)
## 加载Tokenizer
from modelscope import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
## 输入转 Token
sequence = ["In a hole in the ground there lived a hobbit."]
encoded_text = tokenizer(sequence, return_tensors="pt").to("cuda")
print(tokenizer(sequence))
## 输出Token
generate_id = model.generate(**encoded_text)
## Token 转文字
tokenizer.batch_decode(generate_id, skip_special_tokens=True)[0]

可以看到结果一直在输出
在这里插入图片描述

Qwen/Qwen2.5-1.5B-Instruct

只需要将模型名称修改一下,其他代码完全一致。可以看到回答简洁很多。
在这里插入图片描述

总结

Instruct 和 Base 模型的区别主要是训练数据的不同,Instruct 在 Base 的基础上做了更有针对性的对话训练,日常功能开发中,模型需要选用 Instruct 模型。

### 通用LLM与推理LLM的主要差异 #### 差异概述 通用大模型(General Large Language Model, GLLM)通常被设计用于解决广泛的任务,具有强大的泛化能力和多模态处理能力。相比之下,推理专用的大模型(Reasoning-specific Large Language Model, RLLM)则更注重逻辑推导、复杂问题求解以及深层次的理解能力[^1]。 #### 参数规模与训练方式 GLLM往往拥有更大的参数量级以便捕捉更加丰富的语义信息并适应不同类型的输入数据;而RLLM可能会通过精简版结构或者特定任务导向型微调减少不必要的冗余计算开销从而提高效率。此外,在训练过程中,前者采用大规模无标注文本作为主要素材构建基础框架后再辅以少量监督信号调整方向,后者可能更多依赖于高质量领域相关样本集来进行针对性强化学习过程[^4]。 #### 应用场景对比 | 场景描述 | **适用模型** | | --- | --- | | 需要跨多个主题提供自然流畅对话体验的服务平台建设 | GLLM 更适合此类需求因为它具备较强的语言表达多样性和上下文感知力能够满足用户对于各种话题讨论的需求[^2].| | 复杂科学理论验证或工程设计方案评估等高度专业化且需严谨论证场合下的辅助工具开发 | 这种情况下应优先考虑选用经过专门定制后的RLLM因其擅长处理精确数值运算及因果关系分析等问题因此能更好地服务于技术决策支持角色.[^3]| ```python # 示例代码展示如何加载两种不同类型模型 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer_gllm = AutoTokenizer.from_pretrained("gpt-neo-2.7B") # 加载一个典型的通用LLM model_gllm = AutoModelForCausalLM.from_pretrained("gpt-neo-2.7B") tokenizer_rllm = AutoTokenizer.from_pretrained("reasoning-model-x") # 假设存在这样一个专注于推理的LLM model_rllm = AutoModelForCausalLM.from_pretrained("reasoning-model-x") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值