使用C# 处理机器人运动学

文章展示了一个C#类`MyCover`,它使用NumSharp库进行3D空间中的坐标旋转和变换。通过输入初始点的坐标以及绕X、Y、Z轴的旋转角度,类能够计算出旋转后的坐标。同时,文章还包含了测试代码,演示了如何调用这些功能并打印旋转矩阵和变换后的坐标值。
摘要由CSDN通过智能技术生成
using NumSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Cryptography.X509Certificates;
using System.Text;
using System.Threading.Tasks;

namespace Con_Num
{
    public class MyCover
    {
        /// <summary>
        /// 传入参数说明
        /// </summary>
        /// <param name="px">图纸上该点的x坐标</param>
        /// <param name="py">图纸上该点的y坐标</param>
        /// <param name="pz">图纸上该点的z坐标</param>
        /// <param name="x">在X轴上位移了x长度</param>
        /// <param name="y">在Y轴上位移了y长度</param>
        /// <param name="z">在Z轴上位移了z长度</param>
        /// <param name="a">工件绕Z轴旋转的角度</param>
        /// <param name="b">工件绕Y轴旋转的角度</param>
        /// <param name="r">工件绕X轴旋转的角度</param>
        public MyCover(float px, float py, float pz, float x, float y, float z, float a, float b, float r)
        {
            this.x = x;
            this.y = y;
            this.z = z;
            this.a = a;
            this.b = b;
            this.r = r;
            this.rot = new float[4, 4] 
            { 
                {
                    this.Cos(this.a)*this.Cos(this.b),
                    this.Cos(this.a)*this.Sin(this.b)*this.Sin(this.r)-this.Sin(this.a)*this.Cos(this.r),
                    this.Cos(this.a)*this.Sin(this.b)*this.Cos(this.r)+this.Sin(this.a)*this.Sin(this.r),
                    this.x
                },
                {
                    this.Sin(this.a)*this.Cos(this.b),
                    this.Sin(this.a)*this.Sin(this.b)*this.Sin(this.r)+this.Cos(this.a)*this.Cos(this.r),
                    this.Sin(this.a)*this.Sin(this.b)*this.Cos(this.r)-this.Cos(this.a)*this.Sin(this.r),
                    this.y
                },
                {
                    -this.Sin(this.b),
                    this.Cos(this.b)*this.Sin(this.r),
                    this.Cos(this.b)*this.Cos(this.r),
                    this.z
                },
                {
                    0,
                    0,
                    0,
                    1
                },
            };
            this.line = new float[4, 1] { { px}, { py }, { pz }, { 1 } };
        }
        #region 字段和属性

        
        private float[,] rot;

        public float[,] Rot
        {
            get { return rot; }
            set { rot = value; }
        }

        private float[,] line;

        public float[,] Line
        {
            get { return line; }
            set { line = value; }
        }

        private float x;

        public float X
        {
            get { return x; }
            set { x = value; }
        }

        private float y;

        public float Y
        {
            get { return y; }
            set { y = value; }
        }

        private float z;

        public float Z
        {
            get { return z; }
            set { z = value; }
        }

        private float px;

        public float Px
        {
            get { return px; }
            set { px = value; }
        }

        private float py;

        public float Py
        {
            get { return py; }
            set { py = value; }
        }

        private float pz;

        public float Pz
        {
            get { return pz; }
            set { pz = value; }
        }

        private float a;

        public float A
        {
            get { return a; }
            set { a = value; }
        }

        private float b;

        public float B
        {
            get { return b; }
            set { b = value; }
        }

        private float r;

        public float R
        {
            get { return r; }
            set { r = value; }
        }

        #endregion

        public float Cos(float angle)
        {
            return (float)Math.Round(Math.Cos(angle * 1.00 * (Math.PI) / 180), 5);
        }

        public float Sin(float angle)
        {
            return (float)Math.Round(Math.Sin(angle * 1.00 * (Math.PI) / 180), 5);
        }

        public NDArray TestNdArray()
        {
            //float[,] rotMatrix, float[,] pointMatrix
            float[,] rotMatrix = this.rot;
            float[,] pointMatrix = line;
            NDArray ndRotMatrix = np.array(rotMatrix);
            NDArray ndPointMatrix = np.array(pointMatrix);

            return np.matmul(ndRotMatrix, ndPointMatrix);
        }
    }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using NumSharp;

namespace Con_Num
{
    internal class Program
    {

        static void Main(string[] args)
        {
            //int[,] Rot = new int[4, 4];
            //int[,] Lin = new int[4, 1];
            //NDArray ndarr = np.array(Rot);

            //Console.WriteLine(Math.Round(Math.Sin(90 * 1.00 * (Math.PI) / 180), 5));
            //Console.ReadKey();

            MyCover myCover = new MyCover(0, 0, 1, 0, 0, 0, 0, 0, 30);

            NDArray arr1 = myCover.TestNdArray();
            NDArray arrRot = np.array(myCover.Rot);
            Console.WriteLine(arr1.ToString());
            //[[0],
            //[-0.5],
            //[0.86603],
            //[1]]

            Console.WriteLine("=================");
            Console.WriteLine(arrRot.ToString());
            Console.WriteLine("======****===========");
            Console.WriteLine(arrRot["1,1:"].ToString());
            Console.WriteLine("=================");
            Console.WriteLine(arr1["0, 0"].ToString()); //0
            Console.WriteLine(arr1["1, 0"].ToString()); //-0.5
            Console.WriteLine(arr1["2, 0"].ToString()); //0.86603
            Console.ReadKey();
        }


    }
}

### 回答1: 六轴机器人是一种具有六个自由度的机器人,其运动学正逆解是指对机器人的末端执行器的位置和姿态进行求解,以实现机器人的正确运动。 六轴机器人运动学正解是指已知各个关节的角度,求解出机器人末端执行器的位姿。根据六个关节的角度、长度以及关节之间的连接方式,可以使用解析法、几何法或矢量法等方法来求解机器人的正解。这样可以得到机器人末端的位置(三维坐标)和姿态(姿态矩阵或四元数),从而实现末端的运动。 六轴机器人运动学逆解是指已知机器人末端执行器的位姿,求解出各个关节的角度。机器人的逆解是一个反向问题,通常使用数值方法(如牛顿法、雅克比转置法等)进行求解。逆解的目标是通过给定末端执行器的位姿来确定合适的关节角度,使机器人能够到达指定的位置和姿态。逆解可通过迭代算法逐步调整关节角度,直到满足末端执行器的位姿要求。 运动学正逆解在机器人控制中起着重要的作用,它们是实现机器人精确运动控制和路径规划的基础。通过正逆解,可以精确控制六轴机器人的末端执行器的位置和姿态,实现复杂的运动任务,如拾取、装配、焊接等。这对于自动化生产线、工业制造和航天航空等领域具有重要意义。 ### 回答2: 六轴机器人是一种由六个关节组成的机械臂,可以在三维空间内自由移动和执行各种工作任务。六轴机器人运动学正逆解是指通过机械臂的关节角度计算出机械臂的末端执行器的空间位置和姿态,或者通过给定的末端执行器的目标空间位置和姿态计算出关节角度。 机器人运动学正解是从机器人基座坐标系到末端执行器坐标系的过程。它通过利用机械结构和关节限制条件,将各个关节的角度转化为末端执行器的位置和姿态。运动学正解的目的是求解出机械臂末端执行器的位置和姿态,从而确定机器人的姿态。 机器人运动学逆解是从末端执行器坐标系到机器人基座坐标系的过程。它是运动学正解的逆运算,通过给定末端执行器的目标位置和姿态,计算出机器人各个关节的角度值。运动学逆解的目的是确定关节角度,从而实现机械臂从给定的位置到目标位置的移动。 六轴机器人运动学正逆解是机器人的基本问题之一,能够帮助机器人完成各种任务和运动控制。在实际应用中,正逆解通常利用数学方法和算法进行计算,通过求解运动学正逆解,机器人能够自主地执行各种动作和任务。这对于工业自动化、物流和生产线等领域都具有重要的意义。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘诺西亚的火山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值