STM32_FOC_1_Clarke变换计算iα和iβ为何仅用ia ib两相电流

目录

1 Clarke变换


1 Clarke变换

Clarke变换是abc三相静止坐标系转换到αβ两相静止坐标系。

如上图所示,利用投影的方法,很容易得到abc坐标系 和 αβ坐标系的【几何关系】

但如果要得到 abc坐标系 和 αβ坐标系 【电流/电压的关系】, 还需要乘一个系数,为什么要成这个系数呢?就是为了保证 在abc坐标系下三相电流/电压合成的矢量的幅值 与 αβ坐标系两相电流/电压合成的矢量的幅值 相等, 需要乘一个系数 2/3,这样的Clarke变换叫做 等幅值变换/恒幅值变换。// Mark ,此部分理解并不深刻。参考:Clark变换及比例系数2/3推导过程w乐天的博客-CSDN博客_clark变换公式

那么,到了关键的一步了, 为什么Clarke变换计算iα和iβ仅需要用ia 和 ib两相电流呢?

其实是利用了三相电流之和为0。 ia + ib + ic = 0 -> ic = - ia - ib. 将其带入上面的公式,可得。

### 凌欧通用FOC框架解析 #### 工作原理 凌欧通用FOC(Field-Oriented Control)框架旨在简化永磁同步电机(PMSM)无刷直流电机(BLDC)的控制过程。这一框架的核心目标是使三相交流电机能够像直流电机一样易于控制,从而提高效率并减少力矩波动。 在传统控制系统中,由于电机内部磁场的变化复杂,直接对其进行精确控制较为困难。然而,在采用FOC技术之后,通过对定子电流进行坐标变换,可以将复杂的交流信号转换成类似于直流电的形式处理[^3]。具体来说: - **Clarke 变换**:首先应用 Clarke 变换来将三相静止坐标系下的电压或电流数据映射到相正交αβ坐标系下。 - **Park 变换**:接着利用 Park 变换进一步把 αβ 坐标系中的变量转化为 dq0 动态坐标系的数据,其中 d 轴对应于转子磁链的方向,q轴垂直于此方向并与之构成直角坐标系统。这样做的好处是可以独立调节励磁分量(d)以及转矩分量(q),进而实现了所谓的“解耦”。 ```matlab % MATLAB/Simulink 中实现 Clarke Park 变换的例子 function [id, iq] = park_clarke_transform(iA, iB, theta) % Clarke Transform from ABC to Alpha-Beta frame alpha = (iA - iB)/sqrt(3); beta = (iA + iB)/2; % Park Transform from Alpha-Beta to DQ frame using rotor angle 'theta' id = cos(theta)*alpha + sin(theta)*beta; iq = -sin(theta)*alpha + cos(theta)*beta; end ``` #### 实现方式 为了确保高精度的位置反馈用于计算所需的dq轴电流指令值,通常会配备霍尔传感器或者编码器等设备来实时监测转子的角度信息。基于这些测量得到的角度θ,再配合PI控制器调整实际输出至期望设定之间的偏差,最终达到稳定运行的目的。 当涉及到具体的硬件平台时,如STM32系列微控制器,则可以通过其内置定时器单元产生PWM脉宽调制波形去驱动逆变电路完成对电机的有效供电;与此同时借助ADC模数转换模块采集来自电流互感器所感应出来的各相线圈上的瞬时电流强度作为闭环反馈环节的一部分参与整个系统的动态响应特性优化过程中。 对于软件层面而言,除了上述提到的基础算法之外,还需要考虑如何高效地管理任务调度、中断服务程序设计等问题以保障整体性能表现良好。此外,针对不同应用场景需求还可以加入过流保护机制防止意外情况造成损害以及其他特色功能扩展比如弱磁升速等功能支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江湖上都叫我秋博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值