基于AI大模型开发上层应用常见的技术栈

在这里插入图片描述
基于AI大模型的上层应用开发,技术栈要求通常包括以下几个方面:

  1. 编程语言:Python是AI领域的主要编程语言,具有大量的库和框架支持,是大模型开发的首选语言 。TypeScript也是不错的选择,很多模型对外提供类似的API接口供大家使用,作为一个全栈语言,TypeScript可以编写前后端通吃的模型应用。

  2. 深度学习框架:TensorFlow和PyTorch是两个主流的深度学习框架,广泛应用于AI大模型的开发与训练 。

  3. API调用能力:掌握如何使用OpenAI等平台提供的API进行大模型的调用是必要的技能 。

  4. Jupyter Notebook:作为开发和测试的主要环境,Jupyter Notebook支持在本地环境下调用OpenAI API 。

  5. Prompt Engineering:即提示工程,是AI大模型开发中的一项关键技术,用于最大化利用大模型的能力 。

  6. 多模态数据处理:如果大模型支持多模态输入,需要具备处理图像、视频、音频等非文本数据的能力 。

  7. 模型微调:对预训练的大模型进行微调以适应特定应用场景的能力 。

  8. 软硬件适配:了解如何将大模型适配到不同的硬件平台上,如GPU、TPU等,并进行性能优化 。

  9. 安全性和隐私保护:在开发过程中,需要考虑到数据的安全性和隐私保护问题 。

  10. 知识库构建:构建和维护知识库,以支持大模型在特定领域的应用 。

  11. 工具集成:将大模型与外部工具集成,如搜索引擎、APIs等,以扩展模型的能力 。

  12. 模型评估和测试:具备对大模型输出结果进行评估和测试的能力,确保模型的可靠性和准确性 。

  13. 持续学习:大模型技术在快速发展,开发者需要持续学习最新的技术和方法 。

开发者需要具备跨学科的知识和技能,包括机器学习、自然语言处理、软件工程和领域专业知识,以构建高效、可靠的AI大模型应用。

API调用

在基于AI大模型进行上层应用开发时,API调用是一个关键的技术环节。API调用允许开发者通过特定的参数与大模型进行交互,实现各种功能。以下是一些关于API调用的要点:

  1. 调用参数:在调用大模型API时,需要指定一些关键参数,例如模型类型(如gpt-3.5-turbogpt-3.5-16k-0613gpt-4等),提示信息(message),温度系数(temperature)以及最大token数(max_tokens)。

  2. API申请:使用大模型API通常需要向服务提供商申请API访问权限,这可能包括获取API密钥等步骤。

  3. 实践操作:在实际开发中,开发者可能需要通过代码库拉取、设置代理、编写调用代码等方式来实现API调用。例如,使用Python的requests库来发送API请求,并处理响应数据。

  4. 次数限制:API调用可能受到频率限制,如每分钟请求最大次数(RPM)和每分钟Token通信量最大值(TPM),这需要开发者在设计应用时予以考虑。

  5. 安全性和隐私保护:在调用API时,需要考虑数据的安全性和隐私问题。例如,使用可信执行环境(TEE)来保护数据和模型的机密性和完整性。

  6. 模型微调:为了提高大模型在特定任务上的性能,可能需要对模型进行微调。微调可以通过监督学习、自监督学习或强化学习等方式进行,涉及到选择微调任务、准备训练数据集、选择基础模型、进行微调训练以及评估模型性能等步骤。

  7. 多模态数据处理:如果大模型支持多模态输入,开发者需要具备处理图像、视频、音频等非文本数据的能力,这可能涉及到数据的向量化、存储和管理。

  8. 软硬件适配:开发者需要了解如何将大模型适配到不同的硬件平台上,如GPU、TPU等,并进行性能优化。

  9. 知识库构建:构建和维护知识库,以支持大模型在特定领域的应用,可能涉及到使用工具如AnythingLLM来构建本地私有化的专属AI知识库。

  10. 工具集成:将大模型与外部工具集成,如搜索引擎、APIs等,以扩展模型的能力。

MaaS模型即服务

“模型即服务”(Model-as-a-Service, MaaS)是一种新兴的云计算服务模型,它允许用户通过互联网访问和使用人工智能模型,而无需自己构建和维护这些模型。MaaS在人工智能产业链中处于中游位置,基于平台服务、模型及数据集服务、应用开发服务的供给能力,形成了初步的产业图谱 。比如国内的百度智能云、阿里云积平台、硅基智能、OpenRouter等等。

MaaS的核心优势在于其能够提供从数据处理到模型训练、验证、部署及监控的流水线服务,使用户可以更加便捷地开发和部署AI应用。例如,Google的AI Platform、微软的Azure Machine Learning和亚马逊的Amazon SageMaker等平台,均提供了这样的服务 。

MaaS的落地实施需要考虑多个方面,包括准备与评估、制定战略、制定措施以及实施与监控。这些步骤有助于确保MaaS的成功实施,并与城市的可持续发展战略相一致 。

MaaS的发展同时也面临一些挑战,如尚未形成统一的服务规范和标准体系,服务质量难以衡量,以及模型服务易用性不足等问题 。

在具体实践中,MaaS已被应用于金融、电网等领域,帮助企业提升效率、降低成本,并促进了业务的数字化转型。例如,平安银行的BankGPT服务平台就是MaaS在金融领域的一个应用实例,它通过提供多种模型服务,支持了行内模型应用的高效、低成本开发 。

此外,MaaS也在推动出行即服务(Mobility-as-a-Service)的发展,这是一种整合多种出行方式的一体化服务平台,旨在提供高效、经济、低碳的出行方案,推动绿色、共享、包容性出行 。

总的来说,MaaS作为一种服务模式,通过提供易于访问的AI模型服务,有助于降低技术门槛,加速AI技术在各行各业的应用和普及。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MavenTalk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值