AI大模型训练的万卡集群是什么概念
AI大模型训练的万卡集群是指由一万张及以上的计算加速卡(如GPU、TPU或其他专用AI加速芯片)组成的集群式高性能计算系统,主要用于训练当前参数和训练数据量极为庞大的AI大模型,以下是关于它的详细介绍:
核心组成与架构
- 大量的计算加速卡:计算加速卡是万卡集群的核心部件,如GPU具有强大的并行计算能力,能够同时处理大量的数据和复杂的计算任务,可显著提高模型训练的速度,像英伟达的A100、H100等GPU常被用于此类集群 。
- 高性能网络设备:为了实现众多计算卡之间的高速数据通信和协同工作,需要高性能的网络设备来构建低延迟、高带宽的网络互联架构,如 InfiniBand网络,其能提供超高的传输带宽和极低的延迟,确保计算卡之间可以快速地传输数据和同步信息,从而充分发挥集群的并行计算优势.
- 大规模存储系统:大模型训练涉及海量的数据,包括训练数据、模型参数等,因此需要大规模的高性能存储系统来支持数据的存储和快速读写,存储系统需具备高吞吐、高性能、高可靠、低时延等特性,以满足万卡集群在训练过程中对数据的高效访问需求.
- 智算平台与管理软件:智算平台作为集群的管理和调度中心,负责对计算资源进行统一管理、任务调度、监控和优化等操作,管理软件则要协调计算卡、网络、存储等各部分的协同工作,确保整个集群的高效稳定运行,像Kubernetes等容器编排工具常被用于集群的资源管理和任务调度.
关键技术
- 并行计算技术:通过将大模型的训练任务分解为多个子任务,并分配到不同的计算卡上同时进行计算,实现并行处理,从而大大提高训练效率。例如,在训练一个具有数十亿参数的语言模型时,可以将模型的不同层或不同批次的数据分配到万卡集群中的不同计算卡上进行并行训练.
- 分布式训练框架:借助分布式训练框架,如TensorFlow的分布式训练架构、PyTorch的分布式数据并行(DDP)等,来实现模型在集群中的分布式训练,这些框架能够自动处理计算卡之间的通信、数据同步和梯度更新等复杂操作,使得开发者可以专注于模型的设计和训练逻辑.
- 网络优化技术:为了减少网络延迟和提高数据传输效率,需要采用一系列网络优化技术,如网络拓扑优化、数据压缩、异步通信等,以确保计算卡之间能够快速地交换数据和同步模型参数,从而充分发挥集群的计算性能.
优势与挑战
- 优势:
- 强大的计算能力:能够满足大规模AI模型训练对算力的巨大需求,支持千亿级甚至万亿级参数规模的大模型训练,例如OpenAI训练GPT-4就使用了2.5万张英伟达A100 GPU,耗时约100天左右,如此大规模的计算资源使得训练复杂的大模型成为可能.
- 快速的训练速度:通过并行计算和分布式训练,万卡集群可以显著缩短大模型的训练周期,加快模型的迭代速度,使研究人员和开发者能够更快地进行实验和优化,推动AI技术的快速发展.
- 支持复杂模型和任务:可以处理更加复杂的模型结构和大规模的数据集,为研究和开发更先进的AI技术提供了基础,如在计算机视觉领域训练高精度的图像识别模型,或在自然语言处理领域训练具有更强语言理解和生成能力的大语言模型.
- 挑战:
- 硬件设计与稳定性:构建万卡集群需要解决硬件设计、生产制造等方面的难题,以确保大量计算卡、网络设备和存储设备的长期稳定运行,硬件故障可能会导致整个训练任务的中断或失败,因此需要提高硬件的可靠性和容错能力,例如摩尔线程的夸娥万卡集群平均无故障运行时间超过15天,最长可实现大模型稳定训练30天以上,周均训练有效率在99%以上.
- 网络性能优化:随着计算卡数量的增加,网络通信的复杂度也呈指数级增长,需要优化网络拓扑结构、提高网络带宽和降低延迟,以确保计算卡之间能够高效地进行数据通信和协同工作.
- 软件优化与适配:万卡集群需要专门的软件框架和算法来充分发挥其性能优势,同时还需要解决软件与硬件之间的适配问题,以及不同计算卡、不同节点之间的软件兼容性问题,这需要大量的研发和优化工作.
- 能耗与散热管理:万卡集群的高计算密度导致能耗大幅增加,需要采用高效的电源管理和散热技术来降低能耗和保证设备的正常运行,例如采用液冷技术来冷却计算设备,以提高能源利用效率和设备的稳定性.
- 运维管理难度大:万卡集群的运维管理涉及到大量的设备和复杂的系统,需要专业的运维人员和完善的运维管理体系来确保集群的稳定运行,包括设备监控、故障诊断、性能优化、安全管理等方面的工作.
Nvidia万卡集群方案
NVIDIA万卡集群采用以下解决方案来应对各类问题:
网络架构优化
- 采用InfiniBand网络:InfiniBand网络支持SHARP网络内缩减,可提供高带宽、低延迟的通信环境,能满足集群中计算卡之间频繁的数据交互需求,保障大规模分布式训练时数据的快速传输.
- 运用胖树拓扑结构:在计算岛内使用胖树拓扑,为岛内的GPU提供高带宽连接,确保数据在岛内的高效流通。不过,由于其成本较高,通常不会用于整个集群,而是局限于单个计算岛内部.
- 引入Spectrum-X以太网:Spectrum-X以太网得到NVIDIA库的一级支持,具备灵活性和可扩展性,但使用时需购买特定的收发器.
并行计算策略
- 数据并行:让每个GPU拥有模型权重的完整副本,在梯度更新时进行累加。这种方式对GPU间通信要求相对较低,但要求每个GPU有足够的内存来存储完整的模型权重.
- 张量并行:将神经网络层权重分布在多个GPU上,此方法对网络环境要求较高,需要高带宽、低延迟的网络来支持频繁的设备间通信,以确保不同GPU上的权重能够高效协同工作.
- 流水线并行:把前向计算分为多个阶段,每个GPU负责一部分,该方式对跨设备通信的要求较高,且需要精确的同步机制来保证各个阶段的有序执行.
- 3D并行:结合数据并行、张量并行和流水线并行的优势,最大化FLOP利用率,同时解决内存限制和通信瓶颈问题,充分发挥大规模集群的计算能力.
可靠性与恢复机制
- 热备用节点和冷备用组件:采用热备用节点和冷备用组件相结合的方式,当出现故障时,热备用节点可迅速接替故障节点的工作,减少故障恢复时间,确保集群的高可用性.
- 检查点与内存重建技术:定期保存检查点,并利用内存重建技术在故障发生后快速恢复计算,减少因故障导致的计算损失,这依赖于高效的存储和备份策略来保障检查点数据的安全和快速读取.
成本优化措施
- 网络模块升级:使用Cedar Fever-7网络模块替代ConnectX-7,在减少收发器数量、降低成本的同时,保持网络性能不受影响.
- 交换机选型优化:对InfiniBand、Spectrum-X和Broadcom Tomahawk 5等不同类型的交换机进行成本效益比较,根据实际需求选择合适的交换机,以平衡性能和成本.
资源管理与调度
- 基于Kubernetes的资源管理:借助Kubernetes等容器编排工具,将GPU作为一种资源进行管理和调度。通过安装NVIDIA官方的GPU设备插件,实现对GPU资源的灵活分配和管理,确保不同的任务能够按需获取GPU资源,提高资源利用率.
- 定制化调度策略:一些集群基于Volcano等工具实现定制化的调度策略,如Gang调度、BinPack调度、优先级与抢占、网络拓扑感知调度和延迟调度等,以满足不同任务的需求,提高集群的整体运行效率.
硬件优化与配置
- 高性能GPU选型:选用如H100等高性能的GPU计算卡,其具有高内存容量、强大的计算能力和高带宽的NVLink接口,能够为大规模模型训练提供有力的硬件支持.
- 服务器内部拓扑优化:合理设计服务器内部拓扑结构,如在主机内采用特定的CPU、存储网卡、PCIe Gen4 Switch芯片、NVSwitch芯片和GPU芯片的组合及连接方式,提升GPU之间以及GPU与其他设备之间的通信效率,充分发挥硬件性能.