【Block总结】EfficientViT中的多尺度线性注意力模块即插即用

论文信息

  • 标题: EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
  • 作者: Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han(MIT/浙江大学/清华大学/MIT-IBM Watson AI Lab)[3][7]
  • GitHub: mit-han-lab/efficientvit
  • 研究背景: 高分辨率密集预测(如语义分割、超分辨率)在自动驾驶、计算摄影等领域应用广泛,但现有模型存在计算成本高、硬件部署效率低的问题[3][7]。
    在这里插入图片描述

核心创新点

  1. 多尺度线性注意力(Multi-Scale Linear Attention)

    ### 关于深度学习中的多尺度特征提取模块深度学习领域,多尺度特征提取是一个重要的研究方向,尤其是在计算机视觉任务中。通过设计特定的即插即用模块,可以有效提升模型对不同尺度目标的检测能力。 #### ASPP模块的工作原理 空洞卷积(Dilated Convolution)是一种扩展感受野的技术,在不增加参数数量的情况下能够捕获更大范围的信息。ASPP(Atrous Spatial Pyramid Pooling)模块利用多个具有不同膨胀率的空洞卷积来捕捉图像的不同尺度特征[^1]。具体来说: - 不同膨胀率的空洞卷积被应用于输入特征图上。 - 这些卷积的结果随后会被拼接在一起,并经过全局平均池化层处理。 - 最终输出的是融合了多种尺度信息的特征表示。 以下是ASPP的一个简单实现代码: ```python import torch.nn as nn class ASPP(nn.Module): def __init__(self, in_channels, out_channels): super(ASPP, self).__init__() dilations = [1, 6, 12, 18] self.aspp_blocks = nn.ModuleList([ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=d, dilation=d) for d in dilations ]) def forward(self, x): outputs = [] for block in self.aspp_blocks: outputs.append(block(x)) output = torch.cat(outputs, dim=1) return output ``` #### MSB模块的设计理念 MSB(Multi-Scale Block)作为一种即插即用多尺度特征提取模块,其主要目的是提高模型对于复杂场景下物体大小变化的适应性[^4]。它通常由以下几个部分组成: - **多尺度并行大卷积核模块 (MSPLCK)**:采用不同尺寸的大卷积核进行特征抽取,从而覆盖更广的空间区域。 - **增强并行注意力机制 (EPA)**:通过对齐各个分支之间的关系权重,进一步优化跨通道间的信息交互过程。 这种组合不仅增强了局部细节的表现力,同时也改善了远距离依赖建模的效果。 #### 轻量化网络中的应用实例 - MSF-Net 为了降低计算成本同时保持良好的性能表现,某些研究工作还探索了如何构建更加紧凑高效的架构。例如,在皮肤病变分割任务中提出的MSF-Net就成功地集成了几种创新性的子组件[^3]: - S-Conv 块负责调整标准二维卷积操作的行为特性; - MDC 结合可变步长策略实现了灵活可控的感受视野调节功能; - MFF 利用了金字塔形结构完成高层次语义理解向低层次空间定位线索传递的任务转换流程。 这些改进措施共同促进了最终预测精度指标上的显著进步。 --- ###
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    AI浩

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值